Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. JAN 17

    Urban Socio-Semantic Segmentation with Vision-Language Reasoning

    🤗 Upvotes: 139 | cs.CV, cs.AI, cs.CY Authors: Yu Wang, Yi Wang, Rui Dai, Yujie Wang, Kaikui Liu, Xiangxiang Chu, Yansheng Li Title: Urban Socio-Semantic Segmentation with Vision-Language Reasoning Arxiv: http://arxiv.org/abs/2601.10477v1 Abstract: As hubs of human activity, urban surfaces consist of a wealth of semantic entities. Segmenting these various entities from satellite imagery is crucial for a range of downstream applications. Current advanced segmentation models can reliably segment entities defined by physical attributes (e.g., buildings, water bodies) but still struggle with socially defined categories (e.g., schools, parks). In this work, we achieve socio-semantic segmentation by vision-language model reasoning. To facilitate this, we introduce the Urban Socio-Semantic Segmentation dataset named SocioSeg, a new resource comprising satellite imagery, digital maps, and pixel-level labels of social semantic entities organized in a hierarchical structure. Additionally, we propose a novel vision-language reasoning framework called SocioReasoner that simulates the human process of identifying and annotating social semantic entities via cross-modal recognition and multi-stage reasoning. We employ reinforcement learning to optimize this non-differentiable process and elicit the reasoning capabilities of the vision-language model. Experiments demonstrate our approach's gains over state-of-the-art models and strong zero-shot generalization. Our dataset and code are available in https://github.com/AMAP-ML/SocioReasoner.

    22 min
  2. JAN 17

    STEP3-VL-10B Technical Report

    🤗 Upvotes: 130 | cs.CV Authors: Ailin Huang, Chengyuan Yao, Chunrui Han, Fanqi Wan, Hangyu Guo, Haoran Lv, Hongyu Zhou, Jia Wang, Jian Zhou, Jianjian Sun, Jingcheng Hu, Kangheng Lin, Liang Zhao, Mitt Huang, Song Yuan, Wenwen Qu, Xiangfeng Wang, Yanlin Lai, Yingxiu Zhao, Yinmin Zhang, Yukang Shi, Yuyang Chen, Zejia Weng, Ziyang Meng, Ang Li, Aobo Kong, Bo Dong, Changyi Wan, David Wang, Di Qi, Dingming Li, En Yu, Guopeng Li, Haiquan Yin, Han Zhou, Hanshan Zhang, Haolong Yan, Hebin Zhou, Hongbo Peng, Jiaran Zhang, Jiashu Lv, Jiayi Fu, Jie Cheng, Jie Zhou, Jisheng Yin, Jingjing Xie, Jingwei Wu, Jun Zhang, Junfeng Liu, Kaijun Tan, Kaiwen Yan, Liangyu Chen, Lina Chen, Mingliang Li, Qian Zhao, Quan Sun, Shaoliang Pang, Shengjie Fan, Shijie Shang, Siyuan Zhang, Tianhao You, Wei Ji, Wuxun Xie, Xiaobo Yang, Xiaojie Hou, Xiaoran Jiao, Xiaoxiao Ren, Xiangwen Kong, Xin Huang, Xin Wu, Xing Chen, Xinran Wang, Xuelin Zhang, Yana Wei, Yang Li, Yanming Xu, Yeqing Shen, Yuang Peng, Yue Peng, Yu Zhou, Yusheng Li, Yuxiang Yang, Yuyang Zhang, Zhe Xie, Zhewei Huang, Zhenyi Lu, Zhimin Fan, Zihui Cheng, Daxin Jiang, Qi Han, Xiangyu Zhang, Yibo Zhu, Zheng Ge Title: STEP3-VL-10B Technical Report Arxiv: http://arxiv.org/abs/2601.09668v2 Abstract: We present STEP3-VL-10B, a lightweight open-source foundation model designed to redefine the trade-off between compact efficiency and frontier-level multimodal intelligence. STEP3-VL-10B is realized through two strategic shifts: first, a unified, fully unfrozen pre-training strategy on 1.2T multimodal tokens that integrates a language-aligned Perception Encoder with a Qwen3-8B decoder to establish intrinsic vision-language synergy; and second, a scaled post-training pipeline featuring over 1k iterations of reinforcement learning. Crucially, we implement Parallel Coordinated Reasoning (PaCoRe) to scale test-time compute, allocating resources to scalable perceptual reasoning that explores and synthesizes diverse visual hypotheses. Consequently, despite its compact 10B footprint, STEP3-VL-10B rivals or surpasses models 10$\times$-20$\times$ larger (e.g., GLM-4.6V-106B, Qwen3-VL-235B) and top-tier proprietary flagships like Gemini 2.5 Pro and Seed-1.5-VL. Delivering best-in-class performance, it records 92.2% on MMBench and 80.11% on MMMU, while excelling in complex reasoning with 94.43% on AIME2025 and 75.95% on MathVision. We release the full model suite to provide the community with a powerful, efficient, and reproducible baseline.

    26 min
  3. JAN 17

    Rewarding the Rare: Uniqueness-Aware RL for Creative Problem Solving in LLMs

    🤗 Upvotes: 111 | cs.LG, cs.CL Authors: Zhiyuan Hu, Yucheng Wang, Yufei He, Jiaying Wu, Yilun Zhao, See-Kiong Ng, Cynthia Breazeal, Anh Tuan Luu, Hae Won Park, Bryan Hooi Title: Rewarding the Rare: Uniqueness-Aware RL for Creative Problem Solving in LLMs Arxiv: http://arxiv.org/abs/2601.08763v2 Abstract: Reinforcement learning (RL) has become a central paradigm for post-training large language models (LLMs), particularly for complex reasoning tasks, yet it often suffers from exploration collapse: policies prematurely concentrate on a small set of dominant reasoning patterns, improving pass@1 while limiting rollout-level diversity and gains in pass@k. We argue that this failure stems from regularizing local token behavior rather than diversity over sets of solutions. To address this, we propose Uniqueness-Aware Reinforcement Learning, a rollout-level objective that explicitly rewards correct solutions that exhibit rare high-level strategies. Our method uses an LLM-based judge to cluster rollouts for the same problem according to their high-level solution strategies, ignoring superficial variations, and reweights policy advantages inversely with cluster size. As a result, correct but novel strategies receive higher rewards than redundant ones. Across mathematics, physics, and medical reasoning benchmarks, our approach consistently improves pass@$k$ across large sampling budgets and increases the area under the pass@$k$ curve (AUC@$K$) without sacrificing pass@1, while sustaining exploration and uncovering more diverse solution strategies at scale.

    21 min
  4. JAN 17

    Collaborative Multi-Agent Test-Time Reinforcement Learning for Reasoning

    🤗 Upvotes: 64 | cs.AI, cs.CL Authors: Zhiyuan Hu, Yunhai Hu, Juncheng Liu, Shuyue Stella Li, Yucheng Wang, Zhen Xu, See-Kiong Ng, Anh Tuan Luu, Xinxing Xu, Bryan Hooi, Cynthia Breazeal, Hae Won Park Title: Collaborative Multi-Agent Test-Time Reinforcement Learning for Reasoning Arxiv: http://arxiv.org/abs/2601.09667v2 Abstract: Multi-agent systems have evolved into practical LLM-driven collaborators for many applications, gaining robustness from diversity and cross-checking. However, multi-agent RL (MARL) training is resource-intensive and unstable: co-adapting teammates induce non-stationarity, and rewards are often sparse and high-variance. Therefore, we introduce \textbf{Multi-Agent Test-Time Reinforcement Learning (MATTRL)}, a framework that injects structured textual experience into multi-agent deliberation at inference time. MATTRL forms a multi-expert team of specialists for multi-turn discussions, retrieves and integrates test-time experiences, and reaches consensus for final decision-making. We also study credit assignment for constructing a turn-level experience pool, then reinjecting it into the dialogue. Across challenging benchmarks in medicine, math, and education, MATTRL improves accuracy by an average of 3.67\% over a multi-agent baseline, and by 8.67\% over comparable single-agent baselines. Ablation studies examine different credit-assignment schemes and provide a detailed comparison of how they affect training outcomes. MATTRL offers a stable, effective and efficient path to distribution-shift-robust multi-agent reasoning without tuning.

    25 min
  5. JAN 16

    Controlled Self-Evolution for Algorithmic Code Optimization

    🤗 Upvotes: 97 | cs.CL, cs.AI, cs.NE Authors: Tu Hu, Ronghao Chen, Shuo Zhang, Jianghao Yin, Mou Xiao Feng, Jingping Liu, Shaolei Zhang, Wenqi Jiang, Yuqi Fang, Sen Hu, Huacan Wang, Yi Xu Title: Controlled Self-Evolution for Algorithmic Code Optimization Arxiv: http://arxiv.org/abs/2601.07348v4 Abstract: Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.

    24 min
  6. JAN 16

    DeepResearchEval: An Automated Framework for Deep Research Task Construction and Agentic Evaluation

    🤗 Upvotes: 92 | cs.CL Authors: Yibo Wang, Lei Wang, Yue Deng, Keming Wu, Yao Xiao, Huanjin Yao, Liwei Kang, Hai Ye, Yongcheng Jing, Lidong Bing Title: DeepResearchEval: An Automated Framework for Deep Research Task Construction and Agentic Evaluation Arxiv: http://arxiv.org/abs/2601.09688v1 Abstract: Deep research systems are widely used for multi-step web research, analysis, and cross-source synthesis, yet their evaluation remains challenging. Existing benchmarks often require annotation-intensive task construction, rely on static evaluation dimensions, or fail to reliably verify facts when citations are missing. To bridge these gaps, we introduce DeepResearchEval, an automated framework for deep research task construction and agentic evaluation. For task construction, we propose a persona-driven pipeline generating realistic, complex research tasks anchored in diverse user profiles, applying a two-stage filter Task Qualification and Search Necessity to retain only tasks requiring multi-source evidence integration and external retrieval. For evaluation, we propose an agentic pipeline with two components: an Adaptive Point-wise Quality Evaluation that dynamically derives task-specific evaluation dimensions, criteria, and weights conditioned on each generated task, and an Active Fact-Checking that autonomously extracts and verifies report statements via web search, even when citations are missing.

    19 min
  7. JAN 16

    MAXS: Meta-Adaptive Exploration with LLM Agents

    🤗 Upvotes: 82 | cs.AI Authors: Jian Zhang, Zhiyuan Wang, Zhangqi Wang, Yu He, Haoran Luo, li yuan, Lingling Zhang, Rui Mao, Qika Lin, Jun Liu Title: MAXS: Meta-Adaptive Exploration with LLM Agents Arxiv: http://arxiv.org/abs/2601.09259v1 Abstract: Large Language Model (LLM) Agents exhibit inherent reasoning abilities through the collaboration of multiple tools. However, during agent inference, existing methods often suffer from (i) locally myopic generation, due to the absence of lookahead, and (ii) trajectory instability, where minor early errors can escalate into divergent reasoning paths. These issues make it difficult to balance global effectiveness and computational efficiency. To address these two issues, we propose meta-adaptive exploration with LLM agents https://github.com/exoskeletonzj/MAXS, a meta-adaptive reasoning framework based on LLM Agents that flexibly integrates tool execution and reasoning planning. MAXS employs a lookahead strategy to extend reasoning paths a few steps ahead, estimating the advantage value of tool usage, and combines step consistency variance and inter-step trend slopes to jointly select stable, consistent, and high-value reasoning steps. Additionally, we introduce a trajectory convergence mechanism that controls computational cost by halting further rollouts once path consistency is achieved, enabling a balance between resource efficiency and global effectiveness in multi-tool reasoning. We conduct extensive empirical studies across three base models (MiMo-VL-7B, Qwen2.5-VL-7B, Qwen2.5-VL-32B) and five datasets, demonstrating that MAXS consistently outperforms existing methods in both performance and inference efficiency. Further analysis confirms the effectiveness of our lookahead strategy and tool usage.

    22 min
  8. JAN 16

    Distribution-Aligned Sequence Distillation for Superior Long-CoT Reasoning

    🤗 Upvotes: 47 | cs.LG, cs.CL Authors: Shaotian Yan, Kaiyuan Liu, Chen Shen, Bing Wang, Sinan Fan, Jun Zhang, Yue Wu, Zheng Wang, Jieping Ye Title: Distribution-Aligned Sequence Distillation for Superior Long-CoT Reasoning Arxiv: http://arxiv.org/abs/2601.09088v1 Abstract: In this report, we introduce DASD-4B-Thinking, a lightweight yet highly capable, fully open-source reasoning model. It achieves SOTA performance among open-source models of comparable scale across challenging benchmarks in mathematics, scientific reasoning, and code generation -- even outperforming several larger models. We begin by critically reexamining a widely adopted distillation paradigm in the community: SFT on teacher-generated responses, also known as sequence-level distillation. Although a series of recent works following this scheme have demonstrated remarkable efficiency and strong empirical performance, they are primarily grounded in the SFT perspective. Consequently, these approaches focus predominantly on designing heuristic rules for SFT data filtering, while largely overlooking the core principle of distillation itself -- enabling the student model to learn the teacher's full output distribution so as to inherit its generalization capability. Specifically, we identify three critical limitations in current practice: i) Inadequate representation of the teacher's sequence-level distribution; ii) Misalignment between the teacher's output distribution and the student's learning capacity; and iii) Exposure bias arising from teacher-forced training versus autoregressive inference. In summary, these shortcomings reflect a systemic absence of explicit teacher-student interaction throughout the distillation process, leaving the essence of distillation underexploited. To address these issues, we propose several methodological innovations that collectively form an enhanced sequence-level distillation training pipeline. Remarkably, DASD-4B-Thinking obtains competitive results using only 448K training samples -- an order of magnitude fewer than those employed by most existing open-source efforts. To support community research, we publicly release our models and the training dataset.

    21 min

About

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art