Data Science Deep Dive

INWT Statistics GmbH
Data Science Deep Dive

Du bist Data Scientist oder interessierst dich für Daten, Maschine Learning und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten. Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in mehr als 10 Jahren als Data Scientists im B2B Bereich gesammelt haben. Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt. Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.

  1. 6D AGO

    #74: [PAIQ1] Predictive AI Quarterly

    Predictive AI Quarterly ist unser neues Format im Data Science Deep Dive. Alle 3 Monate sprechen wir über Entwicklungen im Bereich Predictive AI - kompakt, kritisch und praxisnah. Wir starten mit einem Überblick zu den aktuellen News und Trends, danach wird's hands-on: Wir berichten, was wir selbst ausprobiert haben, was gut funktioniert hat und was nicht.   **Zusammenfassung** TabPFN ist ein Foundation-Modell speziell für tabulare Daten, das Prognose- und Klassifikationsaufgaben ohne Finetuning lösen kann Finetuning-Optionen: Neben dem kostenpflichtigen Angebot von PriorLabs existiert ein Open-Source-Repo zum Finetuning von TabPFN, das aktiv weiterentwickelt wird mit TabICL gibt es ein weiteres Foundation-Modell für tabulare Daten, das synthetisch trainiert ist, sich auf Klassifikation konzentriert und auch bei großen Datensätzen (bis 500k Zeilen) schnelle Inferenz verspricht Foundation-Modelle für Zeitreihen: Unternehmen wie IBM, Google und Salesforce entwickeln eigene Foundation-Modelle für Time-Series Forecasting (z. B. TTMs, TimesFM, Moirai), diese werden bislang auf echten Zeitreihen trainiert der GIFT-Benchmark dient als Standard zum Vergleich von Zeitreihenmodellen – hier zeigt sich, dass ein angepasstes TabPFN auch für Zeitreihen überraschend leistungsfähig ist Hands On: TabPFN lässt sich analog zu scikit-learn einsetzen und ist besonders dann praktisch, wenn eine GPU vorhanden ist, die Einstiegshürde ist sehr niedrig in Zukunft wird mit multimodalen Erweiterungen (z. B. Bilder), quantisierten Varianten und weiteren Alternativen zu TabPFN gerechnet, der Bereich Foundation Models für strukturierte Daten entwickelt sich rasant **Links** Podcastfolge #72: TabPFN: Die KI-Revolution für tabulare Daten mit Noah Hollmann TabPFN: Finetuning Angebot von Prior Labs GitHub-Repo: Finetune TabPFN v2 GitHub-Repo: Zero-Shot Time Series Forecasting mit TabPFNv2 TabICL: GitHub-Repo: TabICL – Tabular In-Context Learning Workshop @ ICML 2025: Foundation Models for Structured Data (18. Juli 2025 in Vancouver) Blogartikel & Studien: Tiny Time Mixers (TTMs) von IBM Research Moirai:  A Time Series Foundation Model by Salesforce Blogartikel von inwt: "TabPFN: Die KI-Revolution für tabulare Daten" Huggingface Spaces & Modelle: TimesFM Foundation Model für Zeitreihen von Google Research GIFT-Eval Forecasting Leaderboard 📬 Fragen, Feedback oder Themenwünsche? Schreibt uns gern an: podcast@inwt-statistics.de

    28 min
  2. MAY 29

    #73: Korrelation vs. Kausalität: Was braucht es für fundierte Entscheidungen?

    Korrelation ist nicht gleich Kausalität, und wer fundierte Entscheidungen treffen will, braucht mehr als gute Vorhersagen. In dieser Folge geht es um Confounder, Spurious Correlations und die Frage, wann Machine Learning kausale Einsichten liefern kann. Mit dabei: DoubleML als Brücke zwischen klassischer Statistik und Machine Learning.   **Zusammenfassung** Unterscheidung zwischen Vorhersage und Intervention: Nur Kausalität beantwortet die "Was-wäre-wenn?"-Frage Praxisbeispiele: Bugs & Discounts, Eiskonsum & Kriminalität, Salzgehalt & Flussmenge Wichtig: Confounder identifizieren und herausrechnen, z. B. durch Zeitreihenzerlegung Einführung in Double ML: ML-Modelle für Response und Treatment, Effektschätzung über Residuen Herausforderungen: Overfitting-Bias, Regularisierung, verzerrte Effekte bei hoher Komplexität Alternativen & Ergänzungen: A/B-Tests, strukturelle Gleichungsmodelle, Kausaldiagramme Fazit: Vorsicht bei Spurious Correlations, Ceteris-paribus-Fallen und Feature-Interpretation - Kausalität braucht Kontext und Methode **Links** Blogartikel von Scott Lundberg: Be Careful When Interpreting Predictive Models in Search of Causal Insights https://medium.com/data-science/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6 ICECREAM-Datensatz (verfügbar über das tsapp R-Paket): https://search.r-project.org/CRAN/refmans/tsapp/html/ICECREAM.html Victor Chernozhukov et al. (2018): Double/debiased machine learning for treatment and structural parameters, The Econometrics Journal, Volume 21, Issue 1 https://doi.org/10.1111/ectj.12097 Matheus Facure Alves (2022): Causal Inference for The Brave and True (kostenfreies Online-Buch) https://matheusfacure.github.io/python-causality-handbook/landing-page.html DoubleML (Python & R): https://docs.doubleml.org/stable/index.html EconML (Microsoft Research): https://econml.azurewebsites.net/index.html Causal ML (Uber Engineering): https://causalml.readthedocs.io/en/latest/ Vortragsfolien von Prof. Dr. Steffen Wagner: "Navigating the Ocean of Correlations to the Islands of Causality – Time Series Analyses at its Best", gehalten bei der Machine Learning Week München 2024 https://de.slideshare.net/secret/aArFURFQSBxrzB   📬 Fragen, Feedback oder Themenwünsche? Schreibt uns gern an: podcast@inwt-statistics.de

    45 min
  3. MAY 15

    #72: TabPFN: Die KI-Revolution für tabulare Daten mit Noah Hollmann

    Wir sprechen mit Noah Hollman von Prior Labs, einem der Schöpfer von TabPFN (Tabular Prior Fitted Network), über dieses bahnbrechende Foundation-Modell für tabulare Daten. In der Diskussion geht es um die Funktionsweise von TabPFN, die Rolle von In-Context Learning, die Herausforderungen bei der Anwendung der Transformer-Architektur auf tabulare Daten sowie die Generierung synthetischer Daten mit strukturellen kausalen Modellen (SCMs). Darüber hinaus beleuchten wir die beeindruckenden Benchmarking-Ergebnisse und zusätzliche Features des Modells. Zum Ende hin sprechen wir über die offenen Herausforderungen von Prior Labs und welche "Moonshots" sie für die Zukunft planen.   **Zusammenfassung:** TabPFN ist ein Modell für Vorhersagen auf tabellarischen Daten, entwickelt von Prior Labs Es nutzt In-Context Learning, um Aufgaben durch Sequenzen von Daten zu lernen, und wurde speziell für die Transformer-Architektur angepasst TabPFN wurde mit 100 Millionen synthetischen Datensätzen, die durch strukturelle kausale Modelle (SCMs) generiert wurden, trainiert Es stellt einen neuen Benchmark dar und liefert starke Leistungen über verschiedene Domänen hinweg Das Modell kann Unsicherheiten quantifizieren, mit fehlenden Werten umgehen und Outlier erkennen TabPFN ist auf Consumer-Hardware trainierbar, was die Entwicklung auch auf kleinen GPUs ermöglicht Zukünftige Entwicklungen fokussieren sich auf Zeitreihen, Kausalität und multimodale Modelle   **Links:** Blog: TabPFN: Die KI-Revolution für tabulare Daten https://www.inwt-statistics.de/blog/tabpfn-die-ki-revolution-fuer-tabulare-daten Nature Publikation zu tabPFN aus 2025: https://www.nature.com/articles/s41586-024-08328-6 Artikel über tabPFN  in Fortune: https://fortune.com/2025/02/05/prior-labs-9-million-euro-preseed-funding-tabular-data-ai/ Nature News & views von Duncan C. McElfresh: https://www.nature.com/articles/d41586-024-03852-x Zeit für Unternehmer: https://www.zeit.de/zeit-fuer-unternehmer/2025/01/kuenstliche-intelligenz-tabpfn-tabellen-daten?freebie=a67d9166 Publikation zu tabICL: https://arxiv.org/abs/2502.05564 früher Hintergrund-Artikel zur Transformers Architektur für Bayesianische Inferenz : https://arxiv.org/abs/2112.10510 früheres Working Paper zu tabPFN: https://arxiv.org/abs/2207.01848 GitHub Repo zu tabPFN: https://github.com/PriorLabs/TabPFN Homepage Prior Labs: https://priorlabs.ai/ #71: Predictive LLMs: Skalierung, Reproduzierbarkeit & DeepSeek https://www.podbean.com/ew/pb-p2wjd-1897b7e Feedback, Fragen oder Themenwünsche gern an podcast@inwt-statistics.de

    51 min
  4. MAY 1

    #71: Predictive LLMs: Skalierung, Reproduzierbarkeit & DeepSeek

    In dieser Folge geht's um die Frage: Macht Größe von Large Language Models (LLMs) bei Predictive Analytics wirklich einen Unterschied? Wir vergleichen Open-Source-Modelle mit bis zu 70 Milliarden Parametern – und siehe da, das 8B-Modell schlägt das große Schwergewicht. Außerdem berichten wir vom Finetuning auf einer AWS-Maschine mit 8 A100-GPUs und den Herausforderungen in Bezug auf die Reproduzierbarkeit. Auch das viel diskutierte DeepSeek-Modell haben wir im Autopreis-Benchmark antreten lassen. Und wie immer fragen wir uns: Was ist praktisch und was ist overkill?   **Zusammenfassung** Modellgröße ≠ bessere Prognosen: Das Llama-3.1-8B übertraf das größere 70B-Modell bei der Fahrzeugpreisprognose DeepSeek im Benchmark: Das chinesische Modell zeigt bei größeren Trainingsmengen eine ähnlich gute Performance wie das Llama-3.1-8B, ist bei kleinen Datensätzen aber schwächer Finetuning mit Multi-GPU auf AWS: Für das 70B-Modell war ein Setup mit 8 A100-GPUs nötig Reproduzierbarkeit bleibt schwierig: Trotz Seed erzeugen wiederholte Finetuning-Runs unterschiedliche Ergebnisse Modellselektion empfohlen: Um zuverlässige Prognosen zu erhalten, sollte aus mehreren Finetuning-Durchläufen das beste Modell ausgewählt werden CPU-Inferenz möglich, aber langsam: Im Vergleich zur GPU war die Vorhersage auf der CPU ca. 30-mal langsamer, Quantisierung könnte künftig Abhilfe schaffen Ausblick auf TabPFN & Quantisierung: Kommende Beiträge widmen sich Erfahrungen mit TabPFN und der praktischen Umsetzung von quantisierten LLMs auf kleineren Maschinen **Links** [Begleitender Blogartikel] Predictive LLMs: Skalierung, Reproduzierbarkeit & DeepSeek https://www.inwt-statistics.de/blog/predictive-llms-skalierung-reproduzierbarkeit-und-deepseek #50: Predictive Analytics mit LLMs: ist GPT3.5 besser als XGBoost? https://inwt.podbean.com/e/50-predictive-analytics-mit-llms-ist-gpt35-besser-als-xgboost/ #64: Predictive LLMs: Übertreffen Open-Source-Modelle jetzt OpenAI und XGBoost bei Preisprognosen https://inwt.podbean.com/e/64-predictive-llms-ubertreffen-open-source-modelle-jetzt-openai-und-xgboost-bei-preisprognosen/ vLLM Framework für schnelle Inferenz: https://github.com/vllm-project/vllm?tab=readme-ov-file torchtune Finetuning-Framework von PyTorch: https://github.com/pytorch/torchtune PyTorch Reproducibility: https://pytorch.org/docs/stable/notes/randomness.html Paper zur Reproduzierbarkeit von QLoRA-Finetuning: S. S. Alahmari, L. O. Hall, P. R. Mouton and D. B. Goldgof, "Repeatability of Fine-Tuning Large Language Models Illustrated Using QLoRA," in IEEE Access, vol. 12, pp. 153221-153231, 2024, doi: 10.1109/ACCESS.2024.3470850 https://ieeexplore.ieee.org/document/10700744 heise online: Komprimierte KI: Wie Quantisierung große Sprachmodelle verkleinert von René Peinl https://www.heise.de/hintergrund/Komprimierte-KI-Wie-Quantisierung-grosse-Sprachmodelle-verkleinert-10206033.html deepseek-ai/DeepSeek-R1-Distill-Llama-8B auf Huggingface https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B#6-how-to-run-locally TabPFN: Hollmann, N., Müller, S., Purucker, L. et al. Accurate predictions on small data with a tabular foundation model. Nature 637, 319–326 (2025). https://doi.org/10.1038/s41586-024-08328-6  Feedback, Fragen oder Themenwünsche gern an podcast@inwt-statistics.de

    26 min
  5. APR 17

    #70: Der Aufstieg zur Datenreife – Stufe für Stufe zur Data Maturity

    Wie datenreif ist dein Unternehmen eigentlich? Wir sprechen über die fünf Stufen der Data Maturity – von manueller Datensammlung bis zur KI als Teil der Unternehmenskultur. Dabei geht es auch um die Rolle der Organisation, warum viele beim „Death by Dashboards“ hängenbleiben und wie man echte Fortschritte macht. Und wir diskutieren, welche Abkürzungen auf diesem Weg funktionieren – und welche eher nach hinten losgehen.   **Zusammenfassung** Data Maturity Skala: Fünf Stufen von manueller Datennutzung bis zu datengetriebener Kultur mit AI/ML – viele Unternehmen stecken noch in den unteren Bereichen fest Organisationskultur als Schlüssel: Kultur bestimmt maßgeblich, wie datenreif ein Unternehmen wird – HiPPO-Denke (Highest Paid Person's Opinion), Risikoaversion und fehlende Offenheit sind häufige Bremsklötze Typische Hürden: Datensilos, fehlendes Qualitätsbewusstsein, "Death by Dashboards" und Projekte ohne echten Erkenntnisgewinn Aufbau von Datenreife: Kombination aus Top-Down-Initiativen und Bottom-up-Leuchtturmprojekten, ergänzt durch agile Vorgehensweise PoC → MVP → Produkt: Datenprojekte sollten in kurzen, klar umrissenen Phasen geplant und bei fehlendem Nutzen auch konsequent gestoppt werden Abkürzungen und Workarounds: Externe Daten, simulierte Daten oder cloudbasierte Infrastruktur können helfen – bergen aber auch Risiken für Aussagekraft und Akzeptanz Data Mesh & Self-Service BI: Nur sinnvoll bei entsprechender Datenkultur – sonst droht mehr Chaos als Erkenntnisgewinn   **Links** Maturity Model mit 5 Stufen von Gartner: Gartner Survey Shows Organizations Are Slow to Advance in Data and Analytics https://www.gartner.com/en/newsroom/press-releases/2018-02-05-gartner-survey-shows-organizations-are-slow-to-advance-in-data-and-analytics #61: Technologische Must-Haves: Unser Survival-Guide für Data-Science-Projekte https://www.podbean.com/ew/pb-k6fx5-175ea51 #36: Der Data Mesh Hype und was davon bleibt https://www.podbean.com/ew/pb-7er7v-15080c1 Feedback, Fragen oder Themenwünsche gern an podcast@inwt-statistics.de

    46 min
  6. APR 3

    #69: AI Agents verstehen und evaluieren mit Matthäus Deutsch

    AI Agents sind mehr als nur Chatbots – aber wie bewertet man sie richtig? Wir sprechen über die Herausforderungen beim Testen von AI im Kundenservice, warum falsche API-Parameter ins Chaos führen und wieso "mysteriöser Fleischeintopf" ein PR-Desaster wurde. Matthäus Deutsch von Parloa berichtet, wie flexible Plattformintegrationen und evaluative Ansätze (z.B. assertion-based Testing und Simulationen) den Einsatz von AI Agents vorantreiben. Außerdem: welche Metriken wirklich zählen, was Multi-Agent-Setups leisten und warum der Preisverfall bei Open-Source-Modellen das Game verändert.    Zusammenfassung AI Agents erweitern klassische Chatbots im Kundenservice, insbesondere im Telefonbereich, durch GenAI-basierte, dynamische Lösungen Parloa demonstriert flexible Plattformintegrationen und den Einsatz von Evaluationsmethoden wie assertion-based Testing und Simulationen Die Evaluation von AI Agents erfordert spezielles Benchmarking auf Plattform- und individueller Ebene Typische Herausforderungen sind Integrationsprobleme, fehlerhafte API-Calls und unzureichendes Instruction Following Tests erfolgen sowohl auf Konversationsebene als auch durch deterministische Ansätze und LLMs als Judge Es müssen komplexe Metriken und Trade-offs beachtet werden, wobei häufig binäre Testansätze aggregiert werden Schnelle Updates auf neue Modellversionen sind möglich, allerdings steigen langfristig die Kosten durch umfangreiche Testzyklen Innovationen wie optimierte Speech-to-Speech-Technologien und Open-Source-Lösungen (z. B. DeepSeek) bieten Potenzial zur Kostenreduktion Der Einsatz von Operatoren-Modellen und Tool-Integrationen ermöglicht auch die Anbindung an Legacy-Systeme, z.B. SAP Ziel ist es, den Automatisierungsanteil im Kundenservice zu erhöhen und eine Balance zwischen bewährter Qualität und neuen Features zu finden Links Matthäus Deutsch auf LinkedIn: https://www.linkedin.com/in/matth%C3%A4us-d-928864ab/ Parloa Contact-Center-AI-Plattform https://www.parloa.com/de/ Stellenangebote bei Parloa https://www.parloa.com/company/careers/#jobs #55: Alle machen XGBoost, aber was macht eigentlich XGBoost? Mit Matthäus Deutsch https://www.podbean.com/ew/pb-6gvc6-16d5018 #64: Predictive LLMs: Übertreffen Open-Source-Modelle jetzt OpenAI und XGBoost bei Preisprognosen? https://www.podbean.com/ew/pb-m5qr2-17c425d heise online: "Aromatisches" Chloramingas, Eintopf aus Menschenfleisch: KI-Rezepte irritieren https://www.heise.de/news/Aromatisches-Chlorgas-Eintopf-aus-Menschenfleisch-KI-irritiert-mit-Rezepten-9242991.html Feedback, Fragen oder Themenwünsche gern an podcast@inwt-statistics.de

    47 min
  7. MAR 20

    #68: CI/CD für Daten: Datenversionierung für stabile & nachvollziehbare Systeme

    Daten(banken) versionieren – klingt maximal unsexy, spart aber Stress im Deployment. Warum ohne Schema-Versionierung selbst kleine Änderungen große Probleme verursachen und was ORMs, Flyway oder Liquibase damit zu tun haben, erfahrt ihr hier. Daten historisieren ist ein Must-have für Compliance, Reproduzierbarkeit und Modellierung. Aber Achtung: Nicht jede Lösung passt für jede Datenbank und den Live-Betrieb. Wir geben Tipps, wie ihr eure Datenprodukte systematisch und effizient im Griff behaltet. **Zusammenfassung** Schema-Versionierung ist essenziell, um Änderungen an Datenbanken nachvollziehbar und reibungslos ins Deployment einzubinden Fehlende Versionierung kann zu kaputten Prozessen führen, wenn Schema-Änderungen nicht dokumentiert und automatisiert umgesetzt werden Werkzeuge wie ORMs, Flyway oder Liquibase helfen dabei, Änderungen an Datenbankschemata strukturiert zu verwalten Historisierung von Daten ist für Compliance, Reproduzierbarkeit und Modellierung entscheidend   Ansätze zur Datenhistorisierung: Append-only-Strategien vs. System-Versionierung Herausforderungen: Performance-Engpässe, hohe Pflegekosten und Kompatibilitätsprobleme je nach Datenbank und Migrationstool   Best Practices: Versionierung systematisch einführen, Automatisierung priorisieren und sicherstellen, dass Downgrades funktionieren.   **Links** #58: Arm, aber sexy: Data Warehousing at Scale ohne Budget https://www.podbean.com/ew/pb-gywt4-1719aef #52: In-process Datenbanken und das Ende von Big Data https://www.podbean.com/ew/pb-tekgi-16896e4 #36: Der Data Mesh Hype und was davon bleibt https://www.podbean.com/ew/pb-7er7v-15080c1 Flyway: https://www.red-gate.com/products/flyway/ Liquibase: https://www.liquibase.com/ Alembic (für SQLAlchemy): https://alembic.sqlalchemy.org/en/latest/ MariaDB: https://mariadb.org/ ClickHouse: https://clickhouse.com/ Fragen, Feedback und Themenwünsche gern an podcast@inwt-statistics.de

    41 min
  8. MAR 6

    #67: "It works on my machine" war gestern – Docker Best Practices für Data Science

    Dieser Satz "it works on my machine" hat IT-Teams und Data Scientists lange Nerven gekostet. Früher war Deployment ein mühsames Zusammenspiel aus Setup-Anleitungen, inkompatiblen Umgebungen und endlosen Rückfragen. Docker bringt endlich Ordnung ins Chaos: Anwendungen laufen isoliert, reproduzierbar und unabhängig vom Host-System. Warum Containerisierung für Data Science ein echter Gamechanger ist und welche Best Practices du kennen solltest, erfährst du in dieser Folge!   Zusammenfassung  Früher war Deployment umständlich: lange Setup-Anleitungen, inkompatible Umgebungen, viele Rückfragen  Virtuelle Maschinen haben das Problem teilweise gelöst, sind aber ressourcenintensiv und unflexibel Data Scientists arbeiten oft mit R/Python, was IT-Abteilungen vor Herausforderungen stellt Fehlende Reproduzierbarkeit führt zu Stress, Verzögerungen und hohem Kommunikationsaufwand Docker schafft eine standardisierte, isolierte und reproduzierbare Umgebung für Anwendungen Container laufen direkt auf dem Host-OS, sind schlanker als VMs und starten schneller Mit Dockerfiles lassen sich Umgebungen als Code definieren und automatisch deployen Best Practices: schlanke Base-Images, .dockerignore, nur benötigte Abhängigkeiten installieren Automatisierung mit CI/CD-Pipelines beschleunigt den Entwicklungs- und Deploy-Prozess Containerisierung ist für moderne Data-Science-Workflows unverzichtbar und spart IT sowie Data Science viel Zeit Links Offizielle Docker Dokumentation https://docs.docker.com/ Docker Hub https://hub.docker.com/ [Blog] Die Welt der Container: Einführung in Docker https://www.inwt-statistics.de/blog/die-welt-der-container-einfuehrung-in-docker [Podcast] #14: Kubernetes https://www.podbean.com/ew/pb-m5ggz-13454c7 [Podcast] #59: Besser mit Helm: komplexe Deployments einfach(er) umsetzen https://www.podbean.com/ew/pb-txhnf-17314de [Video] Solomon Hykes stellt Docker vor (2013) "The future of Linux Containers" https://www.youtube.com/watch?v=wW9CAH9nSLs&t=158s Fragen, Feedback und Themenwünsche gern an podcast@inwt-statistics.de

    35 min

About

Du bist Data Scientist oder interessierst dich für Daten, Maschine Learning und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten. Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in mehr als 10 Jahren als Data Scientists im B2B Bereich gesammelt haben. Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt. Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.

You Might Also Like

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes, and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada