Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. 18小时前

    ThinkMorph: Emergent Properties in Multimodal Interleaved Chain-of-Thought Reasoning

    🤗 Upvotes: 56 | cs.CV Authors: Jiawei Gu, Yunzhuo Hao, Huichen Will Wang, Linjie Li, Michael Qizhe Shieh, Yejin Choi, Ranjay Krishna, Yu Cheng Title: ThinkMorph: Emergent Properties in Multimodal Interleaved Chain-of-Thought Reasoning Arxiv: http://arxiv.org/abs/2510.27492v1 Abstract: Multimodal reasoning requires iterative coordination between language and vision, yet it remains unclear what constitutes a meaningful interleaved chain of thought. We posit that text and image thoughts should function as complementary, rather than isomorphic, modalities that mutually advance reasoning. Guided by this principle, we build ThinkMorph, a unified model fine-tuned on 24K high-quality interleaved reasoning traces spanning tasks with varying visual engagement. ThinkMorph learns to generate progressive text-image reasoning steps that concretely manipulate visual content while maintaining coherent verbal logic. It delivers large gains on vision-centric benchmarks (averaging 34.7% over the base model) and generalizes to out-of-domain tasks, matching or surpassing larger and proprietary VLMs. Beyond performance, ThinkMorph exhibits emergent multimodal intelligence, including unseen visual manipulation skills, adaptive switching between reasoning modes, and better test-time scaling through diversified multimodal thoughts.These findings suggest promising directions for characterizing the emergent capabilities of unified models for multimodal reasoning.

    23 分钟
  2. 18小时前

    INT v.s. FP: A Comprehensive Study of Fine-Grained Low-bit Quantization Formats

    🤗 Upvotes: 49 | cs.LG, cs.AI Authors: Mengzhao Chen, Meng Wu, Hui Jin, Zhihang Yuan, Jing Liu, Chaoyi Zhang, Yunshui Li, Jie Huang, Jin Ma, Zeyue Xue, Zhiheng Liu, Xingyan Bin, Ping Luo Title: INT v.s. FP: A Comprehensive Study of Fine-Grained Low-bit Quantization Formats Arxiv: http://arxiv.org/abs/2510.25602v1 Abstract: Modern AI hardware, such as Nvidia's Blackwell architecture, is increasingly embracing low-precision floating-point (FP) formats to handle the pervasive activation outliers in Large Language Models (LLMs). Despite this industry trend, a unified comparison of FP and integer (INT) quantization across varying granularities has been missing, leaving algorithm and hardware co-design without clear guidance. This paper fills that gap by systematically investigating the trade-offs between FP and INT formats. We reveal a critical performance crossover: while FP excels in coarse-grained quantization, the comparison at fine-grained (block-wise) levels is more nuanced. Our comprehensive comparison demonstrates that for popular 8-bit fine-grained formats (e.g., MX with block size 32), MXINT8 is superior to its FP counterpart in both algorithmic accuracy and hardware efficiency. However, for 4-bit formats, FP (e.g., MXFP4, NVFP4) often holds an accuracy advantage , though we show that NVINT4 can surpass NVFP4 when outlier-mitigation techniques like Hadamard rotation are applied. We also introduce a symmetric clipping method that resolves gradient bias in fine-grained low-bit INT training, enabling nearly lossless performance for MXINT8 training. These findings challenge the current hardware trajectory, demonstrating that a one-size-fits-all FP approach is suboptimal and advocating that fine-grained INT formats, particularly MXINT8, offer a better balance of accuracy, power, and efficiency for future AI accelerators.

    21 分钟
  3. 18小时前

    Spatial-SSRL: Enhancing Spatial Understanding via Self-Supervised Reinforcement Learning

    🤗 Upvotes: 21 | cs.CV, cs.AI Authors: Yuhong Liu, Beichen Zhang, Yuhang Zang, Yuhang Cao, Long Xing, Xiaoyi Dong, Haodong Duan, Dahua Lin, Jiaqi Wang Title: Spatial-SSRL: Enhancing Spatial Understanding via Self-Supervised Reinforcement Learning Arxiv: http://arxiv.org/abs/2510.27606v1 Abstract: Spatial understanding remains a weakness of Large Vision-Language Models (LVLMs). Existing supervised fine-tuning (SFT) and recent reinforcement learning with verifiable rewards (RLVR) pipelines depend on costly supervision, specialized tools, or constrained environments that limit scale. We introduce Spatial-SSRL, a self-supervised RL paradigm that derives verifiable signals directly from ordinary RGB or RGB-D images. Spatial-SSRL automatically formulates five pretext tasks that capture 2D and 3D spatial structure: shuffled patch reordering, flipped patch recognition, cropped patch inpainting, regional depth ordering, and relative 3D position prediction. These tasks provide ground-truth answers that are easy to verify and require no human or LVLM annotation. Training on our tasks substantially improves spatial reasoning while preserving general visual capabilities. On seven spatial understanding benchmarks in both image and video settings, Spatial-SSRL delivers average accuracy gains of 4.63% (3B) and 3.89% (7B) over the Qwen2.5-VL baselines. Our results show that simple, intrinsic supervision enables RLVR at scale and provides a practical route to stronger spatial intelligence in LVLMs.

    25 分钟
  4. 3天前

    The End of Manual Decoding: Towards Truly End-to-End Language Models

    🤗 Upvotes: 70 | cs.CL, cs.AI Authors: Zhichao Wang, Dongyang Ma, Xinting Huang, Deng Cai, Tian Lan, Jiahao Xu, Haitao Mi, Xiaoying Tang, Yan Wang Title: The End of Manual Decoding: Towards Truly End-to-End Language Models Arxiv: http://arxiv.org/abs/2510.26697v1 Abstract: The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.

    23 分钟
  5. 3天前

    Kimi Linear: An Expressive, Efficient Attention Architecture

    🤗 Upvotes: 40 | cs.CL, cs.LG Authors: Kimi Team, Yu Zhang, Zongyu Lin, Xingcheng Yao, Jiaxi Hu, Fanqing Meng, Chengyin Liu, Xin Men, Songlin Yang, Zhiyuan Li, Wentao Li, Enzhe Lu, Weizhou Liu, Yanru Chen, Weixin Xu, Longhui Yu, Yejie Wang, Yu Fan, Longguang Zhong, Enming Yuan, Dehao Zhang, Yizhi Zhang, T. Y. Liu, Haiming Wang, Shengjun Fang, Weiran He, Shaowei Liu, Yiwei Li, Jianlin Su, Jiezhong Qiu, Bo Pang, Junjie Yan, Zhejun Jiang, Weixiao Huang, Bohong Yin, Jiacheng You, Chu Wei, Zhengtao Wang, Chao Hong, Yutian Chen, Guanduo Chen, Yucheng Wang, Huabin Zheng, Feng Wang, Yibo Liu, Mengnan Dong, Zheng Zhang, Siyuan Pan, Wenhao Wu, Yuhao Wu, Longyu Guan, Jiawen Tao, Guohong Fu, Xinran Xu, Yuzhi Wang, Guokun Lai, Yuxin Wu, Xinyu Zhou, Zhilin Yang, Yulun Du Title: Kimi Linear: An Expressive, Efficient Attention Architecture Arxiv: http://arxiv.org/abs/2510.26692v1 Abstract: We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.

    23 分钟
  6. 3天前

    Surfer 2: The Next Generation of Cross-Platform Computer Use Agents

    🤗 Upvotes: 28 | cs.AI Authors: Mathieu Andreux, Märt Bakler, Yanael Barbier, Hamza Benchekroun, Emilien Biré, Antoine Bonnet, Riaz Bordie, Nathan Bout, Matthias Brunel, Aleix Cambray, Pierre-Louis Cedoz, Antoine Chassang, Gautier Cloix, Ethan Connelly, Alexandra Constantinou, Ramzi De Coster, Hubert de la Jonquiere, Aurélien Delfosse, Maxime Delpit, Alexis Deprez, Augustin Derupti, Mathieu Diaz, Shannon D'Souza, Julie Dujardin, Abai Edmund, Michael Eickenberg, Armand Fatalot, Wissem Felissi, Isaac Herring, Xavier Koegler, Erwan Le Jumeau de Kergaradec, Aurélien Lac, Maxime Langevin, Corentin Lauverjat, Antonio Loison, Avshalom Manevich, Axel Moyal, Axel Nguyen Kerbel, Marinela Parovic, Julien Revelle, Guillaume Richard, Mats Richter, Ronan Riochet, María Santos, Romain Savidan, Laurent Sifre, Maxime Theillard, Marc Thibault, Ivan Valentini, Tony Wu, Laura Yie, Kai Yuan, Jevgenij Zubovskij Title: Surfer 2: The Next Generation of Cross-Platform Computer Use Agents Arxiv: http://arxiv.org/abs/2510.19949v2 Abstract: Building agents that generalize across web, desktop, and mobile environments remains an open challenge, as prior systems rely on environment-specific interfaces that limit cross-platform deployment. We introduce Surfer 2, a unified architecture operating purely from visual observations that achieves state-of-the-art performance across all three environments. Surfer 2 integrates hierarchical context management, decoupled planning and execution, and self-verification with adaptive recovery, enabling reliable operation over long task horizons. Our system achieves 97.1% accuracy on WebVoyager, 69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, outperforming all prior systems without task-specific fine-tuning. With multiple attempts, Surfer 2 exceeds human performance on all benchmarks. These results demonstrate that systematic orchestration amplifies foundation model capabilities and enables general-purpose computer control through visual interaction alone, while calling for a next-generation vision language model to achieve Pareto-optimal cost-efficiency.

    24 分钟
  7. 3天前

    Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark

    🤗 Upvotes: 27 | cs.CV, cs.AI, cs.CL Authors: Ziyu Guo, Xinyan Chen, Renrui Zhang, Ruichuan An, Yu Qi, Dongzhi Jiang, Xiangtai Li, Manyuan Zhang, Hongsheng Li, Pheng-Ann Heng Title: Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark Arxiv: http://arxiv.org/abs/2510.26802v1 Abstract: Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io

    25 分钟
  8. 3天前

    The Quest for Generalizable Motion Generation: Data, Model, and Evaluation

    🤗 Upvotes: 25 | cs.CV Authors: Jing Lin, Ruisi Wang, Junzhe Lu, Ziqi Huang, Guorui Song, Ailing Zeng, Xian Liu, Chen Wei, Wanqi Yin, Qingping Sun, Zhongang Cai, Lei Yang, Ziwei Liu Title: The Quest for Generalizable Motion Generation: Data, Model, and Evaluation Arxiv: http://arxiv.org/abs/2510.26794v1 Abstract: Despite recent advances in 3D human motion generation (MoGen) on standard benchmarks, existing models still face a fundamental bottleneck in their generalization capability. In contrast, adjacent generative fields, most notably video generation (ViGen), have demonstrated remarkable generalization in modeling human behaviors, highlighting transferable insights that MoGen can leverage. Motivated by this observation, we present a comprehensive framework that systematically transfers knowledge from ViGen to MoGen across three key pillars: data, modeling, and evaluation. First, we introduce ViMoGen-228K, a large-scale dataset comprising 228,000 high-quality motion samples that integrates high-fidelity optical MoCap data with semantically annotated motions from web videos and synthesized samples generated by state-of-the-art ViGen models. The dataset includes both text-motion pairs and text-video-motion triplets, substantially expanding semantic diversity. Second, we propose ViMoGen, a flow-matching-based diffusion transformer that unifies priors from MoCap data and ViGen models through gated multimodal conditioning. To enhance efficiency, we further develop ViMoGen-light, a distilled variant that eliminates video generation dependencies while preserving strong generalization. Finally, we present MBench, a hierarchical benchmark designed for fine-grained evaluation across motion quality, prompt fidelity, and generalization ability. Extensive experiments show that our framework significantly outperforms existing approaches in both automatic and human evaluations. The code, data, and benchmark will be made publicly available.

    23 分钟

关于

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art