
Dependable IoT: Making data from IoT devices dependable and trustworthy for good decision making. With Dr. Akshay Nambi and Ajay Manchepalli
Episode 009 | June 15, 2021
The Internet of Things has been around for a few years now and many businesses and organizations depend on data from these systems to make critical decisions. At the same time, it is also well recognized that this data- even up to 40% of it- can be spurious, and this obviously can have a tremendously negative impact on an organizations’ decision making. But is there a way to evaluate if the sensors in a network are actually working properly and that the data generated by them are above a defined quality threshold? Join us as we speak to Dr Akshay Nambi and Ajay Manchepalli, both from Microsoft Research India, about their innovative work on making sure that IoT data is dependable and verified, truly enabling organizations to make the right decisions.
Akshay Nambi is a Senior Researcher at Microsoft Research India. His research interests lie at the intersection of Systems and Technology for Emerging Markets broadly in the areas of AI, IoT, and Edge Computing. He is particularly interested in building affordable, reliable, and scalable IoT devices to address various societal challenges. His recent projects are focused on improving data quality in low-cost IoT sensors and enhancing performance of DNNs on resource-constrained edge devices. Previously, he spent two years at Microsoft Research as a post-doctoral scholar and he has completed his PhD from the Delft University of Technology (TUDelft) in the Netherlands.
Ajay Manchepalli, as a Research Program Manager, works with researchers across Microsoft Research India, bridging Research innovations to real-world scenarios. He received his Master’s degree in Computer Science from Temple University where he focused on Database Systems. After his Masters, Ajay spent his next 10 years shipping SQL Server products and managing their early adopter customer programs.
For more information about the Microsoft Research India click here.
Related
- Microsoft Research India Podcast: More podcasts from MSR India
- iTunes: Subscribe and listen to new podcasts on iTunes
- Android
- RSS Feed
- Spotify
- Google Podcasts
Transcript
Ajay Manchepalli: The interesting thing that we observed in all these scenarios is how the entire industry is trusting data, and using this data to make business decisions, and they don't have a reliable way to say whether the data is valid or not. That was mind boggling. You're calling data as the new oil, we are deploying these things, and we're collecting the data and making business decisions, and you're not even sure if that data that you've made your decision on is valid. To us it came as a surprise that there wasn't enough already done to solve these challenges and that in some sense was the inspiration to go figure out what it is that we can do to empower these people, because at the end of the day, your decision is only as good as the data.
[Music]
Sridhar Vedantham: Welcome to the Microsoft Research India podcast, where we explore cutting-edge research that’s impacting technology and society. I’m your host, Sridhar Vedantham.
[Music]
The Internet of Things has been around for a few years now and many businesses and organizations depend on data from these systems to make critical decisions. At the same time, it is also well recognized that this data- even up to 40% of it- can be spurious, and this obviously can have a tremendously negative impact on an organizations’ decision making. But is there a way to evaluate if the sensors in a network are actually working properly and that the data generated by them are above a defined quality threshold? Join us as we speak to Dr Akshay Nambi and Ajay Manchepalli, both from Microsoft Research India, about their innovative work on making sure that IoT data is dependable and verified, truly enabling organizations to make the right decisions.
[Music]
Sridhar Vedantham: So, Akshay and Ajay, welcome to the podcast. It's great to have you guys here.
Akshay Nambi: Good evening Sridhar. Thank you for having me here.
Ajay Manchepalli: Oh, I'm excited as well.
Sridhar Vedantham: Cool, and I'm really keen to get this underway because this is a topic that's quite interesting to everybody, you know. When we talk about things like IoT in particular, this has been a term that's been around for quite a while, for many years now and we've heard a lot about the benefits that IoT can bring to us as a society or as a community, or as people at an individual level. Now you guys have been talking about something called Dependable IoT. So, what exactly is Dependable IoT and what does it bring to the IoT space?
Ajay Manchepalli: Yeah, IoT is one area we have seen that is exponentially growing. I mean, if you look at the number of devices that are being deployed it's going into the billions and most of the industries are now relying on this data to make their business decisions. And so, when they go about doing this, we have, with our own experience, we have seen that there are a lot of challenges that comes in play when you're dealing with IoT devices. These are deployed in far off locations, remote locations and in harsh weather conditions, and all of these things can lead to reliability issues with these devices. In fact, the CTO of GE Digital mentioned that, you know, about 40% of all the data they see from these IoT devices are spurious, and even KPMG had a report saying that you know over 80% of CEOs are concerned about the quality of data that they're basing their decisions on.
And we observed that in our own deployments early on, and that's when we realized that there is, there is a fundamental requirement to ensure that the data that is being collected is actually good data, because all these decisions are being based on the data. And since data is the new oil, we are basically focusing on, ok, what is it that we can do to help these businesses know whether the data they're consuming is valid or not and that starts at the source of the truth, which is the sensors and the sensor devices. And so Akshay has built this technology that enables you to understand whether the sensors are working fine or not.
Sridhar Vedantham: So, 40% of data coming from sensors being spurious sounds a little frightening, especially when we are saying that you know businesses and other organizations base a whole lot of the decisions on the data they're getting, right?
Ajay Manchepalli: Absolutely.
Sridhar Vedantham: Akshay, was there anything you wanted to add to this?
Akshay Nambi: Yeah, so if you see, reliability and security are the two big barriers in limiting the true potential of IoT, right? And over the past few years you would have seen IoT community, including Microsoft, made significant progress to improve security aspects of IoT. However, techniques to determine data quality and sensor health remain quite limited. Like security, sensor reliability and data quality are fundamental to realize the true potential of IoT which is the focus of our project- Dependable IoT.
Sridhar Vedantham: Ok, so you know, once again, we've heard these terms like IoT for many years now. Just to kind of demonstrate what the two of you have been speaking about in terms of various aspects or various scenarios in which IoT can be deployed, could you give me a couple of examples where IoT use is widespread?
Akshay Nambi: Right, so let me give an example of air pollution monitoring. So, air pollution is a major concern worldwide, and governments are looking for ways to collect fine grained data to identify and curb pollution. So, to do this, low-cost sensors are being used to monitor pollution levels. There have been deployed in numerous places on moving vehicles to capture the pollution levels accurately. The challenge with these sensors are that these are prone to failures, mainly due to the harsh environments in which they are deployed.
For example, imagine a pollution sensor is measuring high pollution values right at a particular location. And given air pollution is such a local phenomenon, it's impossible to tell if this sensor data is an anomaly or a valid data without having any additional contextual information or sensor redundancy. And due to these reliability challenges the validity and viability of these low-cost sensors have been questioned by various users.
Sridhar Vedantham: Ok, so it sounds kind of strange to me that sensors are being deployed all over the place now and you know, frankly, we all carry sensors on ourselves, right, all the time. Our phones have multiple sensors built into them and so on. But when you talk about sensors breaking down or being faulty or not providing the right kind of data back to the users, what causes these kind of things? I mean, I know you said in the context of, say, air pollution type sensors, you know it could be harsh environments and so on, but what are other reasons for, because of which the sensors could fail or sensor data coul
Information
- Show
- PublishedJune 14, 2021 at 5:51 PM UTC
- Length28 min
- RatingClean