Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. 10 小時前

    A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning

    🤗 Upvotes: 112 | cs.LG, cs.AI Authors: Zhi Zhou, Yuhao Tan, Zenan Li, Yuan Yao, Lan-Zhe Guo, Yu-Feng Li, Xiaoxing Ma Title: A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning Arxiv: http://arxiv.org/abs/2510.15444v1 Abstract: Test-time scaling seeks to improve the reasoning performance of large language models (LLMs) by adding computational resources. A prevalent approach within the field is sampling-based test-time scaling methods, which enhance reasoning by generating multiple reasoning paths for a given input during inference. However, despite its practical success, the theoretical foundations remain underexplored. In this paper, we provide the first theoretical framework for analyzing sampling-based test-time scaling methods, grounded in the perspective of confidence estimation. Based on the framework, we analyze two dominant paradigms: self-consistency and perplexity, and reveal key limitations: self-consistency suffers from high estimation error while perplexity exhibits substantial modeling error and possible degradation of the estimation error convergence. To address these limitations, we introduce RPC, a hybrid method that leverages our theoretical insights through two key components: Perplexity Consistency and Reasoning Pruning. Perplexity Consistency combines the strengths of self-consistency and perplexity, boosting the convergence rate of estimation error from linear to exponential while preserving model error. Reasoning Pruning prevents degradation by eliminating low-probability reasoning paths. Both theoretical analysis and empirical results across seven benchmark datasets demonstrate that RPC has a strong potential for reducing reasoning error. Notably, RPC achieves reasoning performance comparable to self-consistency while not only enhancing confidence reliability but also reducing sampling costs by 50%. The code and resources are available at https://wnjxyk.github.io/RPC.

    20 分鐘
  2. 10 小時前

    OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM

    🤗 Upvotes: 56 | cs.CV, cs.AI, cs.CL Authors: Hanrong Ye, Chao-Han Huck Yang, Arushi Goel, Wei Huang, Ligeng Zhu, Yuanhang Su, Sean Lin, An-Chieh Cheng, Zhen Wan, Jinchuan Tian, Yuming Lou, Dong Yang, Zhijian Liu, Yukang Chen, Ambrish Dantrey, Ehsan Jahangiri, Sreyan Ghosh, Daguang Xu, Ehsan Hosseini-Asl, Danial Mohseni Taheri, Vidya Murali, Sifei Liu, Jason Lu, Oluwatobi Olabiyi, Frank Wang, Rafael Valle, Bryan Catanzaro, Andrew Tao, Song Han, Jan Kautz, Hongxu Yin, Pavlo Molchanov Title: OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM Arxiv: http://arxiv.org/abs/2510.15870v1 Abstract: Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.

    25 分鐘
  3. 10 小時前

    NANO3D: A Training-Free Approach for Efficient 3D Editing Without Masks

    🤗 Upvotes: 50 | cs.CV Authors: Junliang Ye, Shenghao Xie, Ruowen Zhao, Zhengyi Wang, Hongyu Yan, Wenqiang Zu, Lei Ma, Jun Zhu Title: NANO3D: A Training-Free Approach for Efficient 3D Editing Without Masks Arxiv: http://arxiv.org/abs/2510.15019v1 Abstract: 3D object editing is essential for interactive content creation in gaming, animation, and robotics, yet current approaches remain inefficient, inconsistent, and often fail to preserve unedited regions. Most methods rely on editing multi-view renderings followed by reconstruction, which introduces artifacts and limits practicality. To address these challenges, we propose Nano3D, a training-free framework for precise and coherent 3D object editing without masks. Nano3D integrates FlowEdit into TRELLIS to perform localized edits guided by front-view renderings, and further introduces region-aware merging strategies, Voxel/Slat-Merge, which adaptively preserve structural fidelity by ensuring consistency between edited and unedited areas. Experiments demonstrate that Nano3D achieves superior 3D consistency and visual quality compared with existing methods. Based on this framework, we construct the first large-scale 3D editing datasets Nano3D-Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This work addresses long-standing challenges in both algorithm design and data availability, significantly improving the generality and reliability of 3D editing, and laying the groundwork for the development of feed-forward 3D editing models. Project Page:https://jamesyjl.github.io/Nano3D

    23 分鐘
  4. 10 小時前

    Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset

    🤗 Upvotes: 37 | cs.CV Authors: Qingyan Bai, Qiuyu Wang, Hao Ouyang, Yue Yu, Hanlin Wang, Wen Wang, Ka Leong Cheng, Shuailei Ma, Yanhong Zeng, Zichen Liu, Yinghao Xu, Yujun Shen, Qifeng Chen Title: Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset Arxiv: http://arxiv.org/abs/2510.15742v1 Abstract: Instruction-based video editing promises to democratize content creation, yet its progress is severely hampered by the scarcity of large-scale, high-quality training data. We introduce Ditto, a holistic framework designed to tackle this fundamental challenge. At its heart, Ditto features a novel data generation pipeline that fuses the creative diversity of a leading image editor with an in-context video generator, overcoming the limited scope of existing models. To make this process viable, our framework resolves the prohibitive cost-quality trade-off by employing an efficient, distilled model architecture augmented by a temporal enhancer, which simultaneously reduces computational overhead and improves temporal coherence. Finally, to achieve full scalability, this entire pipeline is driven by an intelligent agent that crafts diverse instructions and rigorously filters the output, ensuring quality control at scale. Using this framework, we invested over 12,000 GPU-days to build Ditto-1M, a new dataset of one million high-fidelity video editing examples. We trained our model, Editto, on Ditto-1M with a curriculum learning strategy. The results demonstrate superior instruction-following ability and establish a new state-of-the-art in instruction-based video editing.

    20 分鐘
  5. 10 小時前

    Latent Diffusion Model without Variational Autoencoder

    🤗 Upvotes: 30 | cs.CV, cs.AI Authors: Minglei Shi, Haolin Wang, Wenzhao Zheng, Ziyang Yuan, Xiaoshi Wu, Xintao Wang, Pengfei Wan, Jie Zhou, Jiwen Lu Title: Latent Diffusion Model without Variational Autoencoder Arxiv: http://arxiv.org/abs/2510.15301v2 Abstract: Recent progress in diffusion-based visual generation has largely relied on latent diffusion models with variational autoencoders (VAEs). While effective for high-fidelity synthesis, this VAE+diffusion paradigm suffers from limited training efficiency, slow inference, and poor transferability to broader vision tasks. These issues stem from a key limitation of VAE latent spaces: the lack of clear semantic separation and strong discriminative structure. Our analysis confirms that these properties are crucial not only for perception and understanding tasks, but also for the stable and efficient training of latent diffusion models. Motivated by this insight, we introduce SVG, a novel latent diffusion model without variational autoencoders, which leverages self-supervised representations for visual generation. SVG constructs a feature space with clear semantic discriminability by leveraging frozen DINO features, while a lightweight residual branch captures fine-grained details for high-fidelity reconstruction. Diffusion models are trained directly on this semantically structured latent space to facilitate more efficient learning. As a result, SVG enables accelerated diffusion training, supports few-step sampling, and improves generative quality. Experimental results further show that SVG preserves the semantic and discriminative capabilities of the underlying self-supervised representations, providing a principled pathway toward task-general, high-quality visual representations. Code and interpretations are available at https://howlin-wang.github.io/svg/.

    25 分鐘
  6. 3 天前

    When Models Lie, We Learn: Multilingual Span-Level Hallucination Detection with PsiloQA

    🤗 Upvotes: 81 | cs.CL Authors: Elisei Rykov, Kseniia Petrushina, Maksim Savkin, Valerii Olisov, Artem Vazhentsev, Kseniia Titova, Alexander Panchenko, Vasily Konovalov, Julia Belikova Title: When Models Lie, We Learn: Multilingual Span-Level Hallucination Detection with PsiloQA Arxiv: http://arxiv.org/abs/2510.04849v1 Abstract: Hallucination detection remains a fundamental challenge for the safe and reliable deployment of large language models (LLMs), especially in applications requiring factual accuracy. Existing hallucination benchmarks often operate at the sequence level and are limited to English, lacking the fine-grained, multilingual supervision needed for a comprehensive evaluation. In this work, we introduce PsiloQA, a large-scale, multilingual dataset annotated with span-level hallucinations across 14 languages. PsiloQA is constructed through an automated three-stage pipeline: generating question-answer pairs from Wikipedia using GPT-4o, eliciting potentially hallucinated answers from diverse LLMs in a no-context setting, and automatically annotating hallucinated spans using GPT-4o by comparing against golden answers and retrieved context. We evaluate a wide range of hallucination detection methods -- including uncertainty quantification, LLM-based tagging, and fine-tuned encoder models -- and show that encoder-based models achieve the strongest performance across languages. Furthermore, PsiloQA demonstrates effective cross-lingual generalization and supports robust knowledge transfer to other benchmarks, all while being significantly more cost-efficient than human-annotated datasets. Our dataset and results advance the development of scalable, fine-grained hallucination detection in multilingual settings.

    24 分鐘

簡介

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

你可能也會喜歡