在生成式人工智能技术飞速迭代的背景下,市场营销领域正经历从 “人力驱动” 向 “人机协同” 的根本性转变。
本期播客为《生成:AI生产力重构营销新范式》新书解读第十一章,围绕 “模式重构” 展开深度探讨,结合行业实践与技术趋势,明确了人机协作的核心逻辑、演进路径及对企业组织的深远影响,为营销从业者提供了清晰的行动框架。
共谈嘉宾:
谭北平 — 营销科学家 MSAI联合主播 / 秒针营销科学院院长
钱峻 — 营销科学家 MSAI 联合主播 / MSAI M360 创+平台创始人
SHOWNOTES:
0:32 第十一章“模式重构”,人类与人工智能的分工与协作方式。
3:16 人智协作的第一种模式:嵌入模式。
4:17 第二种协作模式——副驾驶(Copilot)模式。
7:47 人智协作的第三种模式:智能体模式。
12:14 三种模式的演进与营销效率跃迁。
17:33 AI驱动的一岗多能与组织变革。
21:33 人力资源成本与AI替代的辩证关系。
23:45 人类如何结合AI洞察生成优质策略。
一、人机协作的底层逻辑:从 “工具辅助” 到 “自主协同” 的演进
比尔・盖茨的两次预言为技术与行业的融合提供了重要参照:1980 年 “每个家庭拥有一台计算机” 的预言已成为现实,2024 年他再次提出 “每个上网者将拥有 AI 个人助理” 的愿景 —— 这一趋势在营销领域已初现端倪。
当前,营销人员与 AI 协作不再是 “可选项”,而是 “必备能力”,其核心演进方向可通过三种协作模式具体呈现,且每种模式对应着不同的人机权责分配与应用场景。
(一)嵌入模式:AI 作为 “精准工具”,人类主导决策
嵌入模式是人机协作的基础形态,核心特征为 “人类主导、AI 执行”,适用于营销中需要精准落地的标准化任务。
- 权责划分:人类承担目标拆解、方向把控与最终决策角色,通过明确的提示词引导 AI 理解需求;AI 仅作为工具,负责完成具体执行环节,无自主决策权限。
- 典型场景:在文案创作中,营销人员明确 “产品核心卖点(如环保材质)、目标受众(年轻妈妈)、文案风格(温馨亲切)” 等关键信息后,AI 基于提示词生成多版初稿;在广告创意 brainstorm 阶段,人类提出 “结合节日热点” 的方向,AI 辅助生成视觉创意草图或概念描述。
- 核心价值:降低重复劳动成本,让人类聚焦 “策略判断” 而非 “执行细节”,尤其在研究洞察、内容初稿生成等场景中,可将效率提升 3-5 倍。
副驾驶模式(Copilot 模式)由微软于 2021 年首次提出,最初应用于代码编写领域,如今已成为营销中 “复杂任务协同” 的核心模式,标志着 AI 从 “工具” 向 “伙伴” 的转变。
- 权责划分:人类与 AI 形成 “双向互动” 关系 ——AI 不仅能执行任务,还能协助人类拆解目标、理清思路;人类则负责需求确认、方案调整与最终选择,双方共同参与决策过程。
- 典型场景:企业微信的 “智能总结” 功能是典型案例:员工无需改变原有沟通习惯,AI 实时分析团队聊天记录,自动提炼 “任务进展(如文案初稿已完成)、待办事项(如客户反馈需修改标题)”;在 PPT 撰写中,人类仅提出 “主题为‘Q3 营销复盘’”,AI 先搭建 “数据概览 - 问题分析 - 优化建议” 的框架,再填充基础内容,人类后续基于需求调整逻辑或设计风格。
- 核心价值:解决 “跨领域能力不足” 的痛点 —— 对不熟悉数据分析的内容人员,AI 可辅助解读数据趋势;对缺乏创意经验的调研人员,AI 可提供创意方向参考,实现 “专业能力互补”。
智能体模式是人机协作的高阶形态,也是未来营销的核心发展方向,其关键在于 AI 具备 “自主感知、规划、行动” 的闭环能力,人类仅需扮演 “监督者” 角色。
- 权责划分:人类仅设定核心目标(如 “研究 AI 时代品牌情绪分类并制定行动方案”),AI 自主完成 “信息采集(搜索最新行业报告)、任务拆解(分为‘文献梳理 - 分类框架搭建 - 方案撰写’三步)、执行落地(生成可交互 PPT 或网页)” 全流程,无需人类手动干预步骤。
- 典型场景:在广告智能投放中,AI 自主采集 “不同渠道(抖音、小红书)的投放数据、用户点击转化率、竞品投放策略”,分析后自动加大 “高转化广告” 的预算,减少低效投放;电商平台的 AI 购物助手会基于用户历史购物记录、浏览行为,预判 “潜在需求(如夏季来临前推荐防晒用品)”,并通过精准提问(如 “是否需要儿童款防晒”)确认需求,提升转化效率。
- 核心价值:突破 “人类精力边界”,实现 “复杂任务全流程自动化”—— 以品牌情绪研究为例,传统模式下需 3 人团队耗时 1 周完成,AI 智能体可在 24 小时内完成从数据采集到方案输出的全流程,且能实时更新最新信息。
二、模式演进的核心影响:营销效率与组织形态的双重重构
三种协作模式的递进,不仅改变了 “人机工作方式”,更对营销行业的 “效率标准” 与 “组织架构” 产生了颠覆性影响,具体体现在两个关键维度:
(一)效率跃迁:从 “个体能力提升” 到 “创造力放大”
在 AI 协同下,营销领域的效率提升不再是 “线性增长”,而是 “指数级突破”:
- 数据处理层面:AI 可在 1 小时内完成 “10 万条用户评论的情感分析”,而传统人工需 3 人团队耗时 3 天,且准确率可达 90% 以上;
- 创造力层面:创意人员借助 AI 辅助,可在相同时间内生成 10 倍于传统模式的创意方案 —— 例如在海报设计中,AI 快速生成多版视觉方案,人类聚焦 “创意筛选与情感共鸣优化”,最终优质方案产出量提升显著;
- 实战案例佐证:36 氪的 “AI 虚拟店铺” 项目中,AI 自主完成 “店铺起名(努努米微)、LOGO 设计、服装设计、模特图制作、商品详情文案” 全流程,仅用两周就搭建起传统模式下需 10 人团队、投入数十万元的淘宝店,上线后 3 个月卖出 600 多件短袖、100 多条裙子,后续还通过虚拟数字人直播打通 “生产 - 销售 - 交付” 链条,证明 AI 对 “全链路效率” 的重构价值。
AI 的深度渗透正在打破营销行业 “岗位细分” 的传统架构,推动 “一岗多能” 成为常态,企业组织形态也随之向 “扁平化、一体化” 转型:
- 岗位能力重构:传统营销团队需细分 “市场调研、数据分析、内容创作、美工设计” 等岗位,如今在 AI 辅助下,内容人员可通过 AI 工具完成 “数据可视化分析”,调研人员可借助 AI 生成 “创意海报初稿”,销售人员可自动生成 “社交媒体推广文案”——2024 年行业报告显示,超 60% 的研究报告已标注 “AI 生成图片”,许多企业的 “美工岗位” 功能被其他岗位整合,专业壁垒逐渐弱化;
- 企业架构调整:一方面,企业减少对外部供应商的依赖(如原本外包的 “设计服务”“数据调研服务”,可通过内部 AI 工具完成);另一方面,构建 “AI 智能中台” 成为核心趋势 —— 将 “营销洞察、内容创意、媒介投放、效果评估” 等环节通过中台串联,形成 “数据互通、流程自动化” 的协同体系,例如亚马逊卖家借助 AI 智能体,可实现 “竞品数据监测 - 广告投放调整 - 内容优化” 的全流程自主运行,无需跨部门反复沟通。
三、关键问题与应对:AI 时代营销人的核心能力要求
随着人机协作模式的深化,行业也面临 “人力成本变化”“能力适配” 等现实问题,其答案直接决定营销人能否在变革中立足:
(一)“一岗多能” 是否会导致人力成本下降?—— 辩证看待 “价值重构”
从历史经验看,技术变革往往带来 “短期岗位调整” 与 “长期价值提升” 的双重效应:汽车制造行业引入自动化生产线后,初期部分车工岗位收入下降,但随着生产效率提升、市场规模扩大,最终催生了 “中产工人” 群体;营销行业同理,AI 会淘汰 “纯执行型岗位”(如仅负责文案初稿撰写、基础数据录入的岗位),但会催生 “AI 协作型岗位”(如能引导 AI 生成优质方案、评估 AI 输出效果的岗位)。
- 企业视角:不会单纯追求 “人力成本下降”,而是更关注 “人效提升”—— 愿意
Informações
- Podcast
- FrequênciaDuas vezes/semana
- Publicado20 de setembro de 2025 às 10:15 UTC
- Duração27min
- Episódio2
- ClassificaçãoLivre