Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. 4 小時前

    Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation

    🤗 Upvotes: 61 | cs.CL, cs.AI Authors: Ling-Team, Ang Li, Ben Liu, Binbin Hu, Bing Li, Bingwei Zeng, Borui Ye, Caizhi Tang, Changxin Tian, Chao Huang, Chao Zhang, Chen Qian, Chenchen Ju, Chenchen Li, Chengfu Tang, Chili Fu, Chunshao Ren, Chunwei Wu, Cong Zhang, Cunyin Peng, Dafeng Xu, Daixin Wang, Dalong Zhang, Dingnan Jin, Dingyuan Zhu, Dongke Hu, Fangzheng Zhao, Feifan Wu, Feng Zhu, Gangshan Wang, Haitao Zhang, Hailin Zhao, Hanxiao Zhang, Hanzi Wang, Hao Qian, Haoyi Yu, Heng Zhang, Hongliang Zhang, Hongzhi Luan, Huirong Dong, Huizhong Li, Jia Li, Jia Liu, Jialong Zhu, Jian Sha, Jianping Wei, Jiaolong Yang, Jieyue Ma, Jiewei Wu, Jinjing Huang, Jingyun Tian, Jingyuan Zhang, Jinquan Sun, Juanhui Tu, Jun Liu, Jun Xu, Jun Zhou, Junjie Ou, Junpeng Fang, Kaihong Zhang, Kaiqin Hu, Ke Shi, Kun Tang, Kunlong Chen, Lanyin Mei, Lei Liang, Lei Xu, Libo Zhang, Lin Ju, Lin Yuan, Ling Zhong, Lintao Ma, Lu Liu, Lu Yu, Lun Cai, Meiqi Zhu, Mengying Li, Min Chen, Minghao Xue, Minghong Cai, Mingming Yin, Peijie Jiang, Peilong Zhao, Pingping Liu, Qian Zhao, Qing Cui, Qingxiang Huang, Qingyuan Yang, Quankun Yu, Shaowei Wei, Shijie Lian, Shoujian Zheng, Shun Song, Shungen Zhang, Shuo Zhang, Siyuan Li, Song Liu, Ting Guo, Tong Zhao, Wanli Gu, Weichang Wu, Weiguang Han, Wenjing Fang, Wubin Wang, Xiang Shu, Xiao Shi, Xiaoshun Lan, Xiaolu Zhang, Xiaqing Sun, Xin Zhao, Xingyu Lu, Xiong Xu, Xudong Wang, Xudong Wang, Xuemin Yang, Yajie Yang, Yang Xiang, Yanzhe Li, Yi Zhang, Yilong Wang, Yingxue Li, Yongzhen Guo, Yuzhuo Fu, Yuanyuan Wang, Yue Yang, Yue Yu, Yufeng Deng, Yun Zhang, Yunfei Xu, Yuqi Zhang, Yuxiao He, Zengke Gui, Zhaoxin Huan, Zhaoyang Wang, Zhibo Zhu, Zhihao Wang, Zhiqiang Zhang, Zhoufei Wang, Zihang Zeng, Ziqi Liu, Zitao Xuan, Zuoli Tang Title: Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation Arxiv: http://arxiv.org/abs/2510.22115v1 Abstract: We introduce Ling 2.0, a series reasoning-oriented language foundation built upon the principle that every activation boosts reasoning capability. Designed to scale from tens of billions to one trillion parameters under a unified Mixture-of-Experts (MoE) paradigm, Ling 2.0 emphasizes high sparsity, cross-scale consistency, and efficiency guided by empirical scaling laws. The series includes three non-thinking (instruct) models - Ling-mini-2.0, Ling-flash-2.0, and Ling-1T - ranging from 16B to 1T total parameters and achieving up to 7-fold active-compute efficiency compared with dense counterparts. Ling 2.0 integrates coordinated innovations across model architecture, pre-training, post-training, and infrastructure: a high-sparsity MoE with MTP for efficient reasoning, reasoning-oriented data and mid-training CoT activation, reinforcement-based fine-tuning (DFT, Evo-CoT), and full-scale FP8 training with fine-grained heterogeneous pipelines. At the trillion scale, Ling-1T establishes a new Pareto frontier of reasoning accuracy versus computational efficiency, demonstrating that sparse activation, when properly aligned with reasoning objectives, enables scalable and efficient intelligence. Collectively, Ling 2.0 provides a coherent, open, and efficient foundation for advancing future reasoning and thinking models, including the Ring series built upon the same base.

    24 分鐘
  2. 4 小時前

    Generalizing Test-time Compute-optimal Scaling as an Optimizable Graph

    🤗 Upvotes: 34 | cs.LG, cs.AI, cs.CL, I.2.7 Authors: Fali Wang, Jihai Chen, Shuhua Yang, Runxue Bao, Tianxiang Zhao, Zhiwei Zhang, Xianfeng Tang, Hui Liu, Qi He, Suhang Wang Title: Generalizing Test-time Compute-optimal Scaling as an Optimizable Graph Arxiv: http://arxiv.org/abs/2511.00086v1 Abstract: Test-Time Scaling (TTS) improves large language models (LLMs) by allocating additional computation during inference, typically through parallel, sequential, or hybrid scaling. However, prior studies often assume fixed collaboration architectures (e.g., topologies) and single-model usage, overlooking that optimal architectures and model combinations can vary across tasks. Therefore, we study the novel problem of searching for compute-optimal model combinations and architectures in TTS under a fixed budget. We formalize it as a multi-LLM collaboration graph, where nodes encode roles and LLM model assignments, and edges capture information flow. This problem is challenging because (i) the combinatorial search space is prohibitively large, and (ii) task-specific requirements demand tailored designs. To address these, we reformulate the problem as probabilistic graph optimization and, through pilot experiments, derive three empirical insights into TTS collaboration graphs. Guided by these insights, we propose Agent-REINFORCE, an LLM-agent-augmented framework that mirrors the REINFORCE pipeline by mapping sampling-gradient-update to sampling-feedback-update, where feedback serves as a textual gradient to update the probabilistic graph and efficiently search for optimal multi-LLM collaboration graphs. Experiments show that Agent-REINFORCE outperforms both traditional and LLM-based baselines in sample efficiency and search performance, and effectively identifies optimal graphs under joint objectives of accuracy and inference latency.

    23 分鐘
  3. 4 小時前

    The Underappreciated Power of Vision Models for Graph Structural Understanding

    🤗 Upvotes: 31 | cs.CV, cs.AI, cs.LG Authors: Xinjian Zhao, Wei Pang, Zhongkai Xue, Xiangru Jian, Lei Zhang, Yaoyao Xu, Xiaozhuang Song, Shu Wu, Tianshu Yu Title: The Underappreciated Power of Vision Models for Graph Structural Understanding Arxiv: http://arxiv.org/abs/2510.24788v1 Abstract: Graph Neural Networks operate through bottom-up message-passing, fundamentally differing from human visual perception, which intuitively captures global structures first. We investigate the underappreciated potential of vision models for graph understanding, finding they achieve performance comparable to GNNs on established benchmarks while exhibiting distinctly different learning patterns. These divergent behaviors, combined with limitations of existing benchmarks that conflate domain features with topological understanding, motivate our introduction of GraphAbstract. This benchmark evaluates models' ability to perceive global graph properties as humans do: recognizing organizational archetypes, detecting symmetry, sensing connectivity strength, and identifying critical elements. Our results reveal that vision models significantly outperform GNNs on tasks requiring holistic structural understanding and maintain generalizability across varying graph scales, while GNNs struggle with global pattern abstraction and degrade with increasing graph size. This work demonstrates that vision models possess remarkable yet underutilized capabilities for graph structural understanding, particularly for problems requiring global topological awareness and scale-invariant reasoning. These findings open new avenues to leverage this underappreciated potential for developing more effective graph foundation models for tasks dominated by holistic pattern recognition.

    26 分鐘
  4. 4 小時前

    UniLumos: Fast and Unified Image and Video Relighting with Physics-Plausible Feedback

    🤗 Upvotes: 27 | cs.CV Authors: Ropeway Liu, Hangjie Yuan, Bo Dong, Jiazheng Xing, Jinwang Wang, Rui Zhao, Yan Xing, Weihua Chen, Fan Wang Title: UniLumos: Fast and Unified Image and Video Relighting with Physics-Plausible Feedback Arxiv: http://arxiv.org/abs/2511.01678v1 Abstract: Relighting is a crucial task with both practical demand and artistic value, and recent diffusion models have shown strong potential by enabling rich and controllable lighting effects. However, as they are typically optimized in semantic latent space, where proximity does not guarantee physical correctness in visual space, they often produce unrealistic results, such as overexposed highlights, misaligned shadows, and incorrect occlusions. We address this with UniLumos, a unified relighting framework for both images and videos that brings RGB-space geometry feedback into a flow matching backbone. By supervising the model with depth and normal maps extracted from its outputs, we explicitly align lighting effects with the scene structure, enhancing physical plausibility. Nevertheless, this feedback requires high-quality outputs for supervision in visual space, making standard multi-step denoising computationally expensive. To mitigate this, we employ path consistency learning, allowing supervision to remain effective even under few-step training regimes. To enable fine-grained relighting control and supervision, we design a structured six-dimensional annotation protocol capturing core illumination attributes. Building upon this, we propose LumosBench, a disentangled attribute-level benchmark that evaluates lighting controllability via large vision-language models, enabling automatic and interpretable assessment of relighting precision across individual dimensions. Extensive experiments demonstrate that UniLumos achieves state-of-the-art relighting quality with significantly improved physical consistency, while delivering a 20x speedup for both image and video relighting. Code is available at https://github.com/alibaba-damo-academy/Lumos-Custom.

    24 分鐘
  5. 4 小時前

    ROVER: Benchmarking Reciprocal Cross-Modal Reasoning for Omnimodal Generation

    🤗 Upvotes: 24 | cs.CV Authors: Yongyuan Liang, Wei Chow, Feng Li, Ziqiao Ma, Xiyao Wang, Jiageng Mao, Jiuhai Chen, Jiatao Gu, Yue Wang, Furong Huang Title: ROVER: Benchmarking Reciprocal Cross-Modal Reasoning for Omnimodal Generation Arxiv: http://arxiv.org/abs/2511.01163v1 Abstract: Unified multimodal models (UMMs) have emerged as a powerful paradigm for seamlessly unifying text and image understanding and generation. However, prevailing evaluations treat these abilities in isolation, such that tasks with multimodal inputs and outputs are scored primarily through unimodal reasoning, i.e., textual benchmarks emphasize language-based reasoning, while visual benchmarks emphasize reasoning outcomes manifested in the pixels. We introduce ROVER to address this pressing need to test reciprocal cross-modal reasoning, the use of one modality to guide, verify, or refine outputs in the other, an ability central to the vision of unified multimodal intelligence. ROVER is a human-annotated benchmark that explicitly targets reciprocal cross-modal reasoning, which contains 1312 tasks grounded in 1876 images, spanning two complementary settings. Verbally-augmented reasoning for visual generation evaluates whether models can use verbal prompts and reasoning chains to guide faithful image synthesis. Visually-augmented reasoning for verbal generation evaluates whether models can generate intermediate visualizations that strengthen their own reasoning processes for question answering. Experiments on 17 unified models reveal two key findings: (i) Cross-modal reasoning determines visual generation quality, with interleaved models significantly outperforming non-interleaved ones; notably, combining strong unimodal models fails to achieve comparable reasoning. (ii) Models show dissociation between physical and symbolic reasoning: they succeed at interpreting perceptual concepts literally but fail to construct visual abstractions for symbolic tasks, where faulty reasoning harms performance. These results highlight reciprocal cross-modal reasoning as a critical frontier for enabling true omnimodal generation.

    26 分鐘
  6. 4 小時前

    PHUMA: Physically-Grounded Humanoid Locomotion Dataset

    🤗 Upvotes: 23 | cs.RO Authors: Kyungmin Lee, Sibeen Kim, Minho Park, Hyunseung Kim, Dongyoon Hwang, Hojoon Lee, Jaegul Choo Title: PHUMA: Physically-Grounded Humanoid Locomotion Dataset Arxiv: http://arxiv.org/abs/2510.26236v1 Abstract: Motion imitation is a promising approach for humanoid locomotion, enabling agents to acquire humanlike behaviors. Existing methods typically rely on high-quality motion capture datasets such as AMASS, but these are scarce and expensive, limiting scalability and diversity. Recent studies attempt to scale data collection by converting large-scale internet videos, exemplified by Humanoid-X. However, they often introduce physical artifacts such as floating, penetration, and foot skating, which hinder stable imitation. In response, we introduce PHUMA, a Physically-grounded HUMAnoid locomotion dataset that leverages human video at scale, while addressing physical artifacts through careful data curation and physics-constrained retargeting. PHUMA enforces joint limits, ensures ground contact, and eliminates foot skating, producing motions that are both large-scale and physically reliable. We evaluated PHUMA in two sets of conditions: (i) imitation of unseen motion from self-recorded test videos and (ii) path following with pelvis-only guidance. In both cases, PHUMA-trained policies outperform Humanoid-X and AMASS, achieving significant gains in imitating diverse motions. The code is available at https://davian-robotics.github.io/PHUMA.

    21 分鐘
  7. 4 小時前

    UniREditBench: A Unified Reasoning-based Image Editing Benchmark

    🤗 Upvotes: 22 | cs.CV Authors: Feng Han, Yibin Wang, Chenglin Li, Zheming Liang, Dianyi Wang, Yang Jiao, Zhipeng Wei, Chao Gong, Cheng Jin, Jingjing Chen, Jiaqi Wang Title: UniREditBench: A Unified Reasoning-based Image Editing Benchmark Arxiv: http://arxiv.org/abs/2511.01295v1 Abstract: Recent advances in multi-modal generative models have driven substantial improvements in image editing. However, current generative models still struggle with handling diverse and complex image editing tasks that require implicit reasoning, underscoring the need for a comprehensive benchmark to systematically assess their performance across various reasoning scenarios. Existing benchmarks primarily focus on single-object attribute transformation in realistic scenarios, which, while effective, encounter two key challenges: (1) they largely overlook multi-object interactions as well as game-world scenarios that involve human-defined rules, which are common in real-life applications; (2) they only rely on textual references to evaluate the generated images, potentially leading to systematic misjudgments, especially in complex reasoning scenarios. To this end, this work proposes UniREditBench, a unified benchmark for reasoning-based image editing evaluation. It comprises 2,700 meticulously curated samples, covering both real- and game-world scenarios across 8 primary dimensions and 18 sub-dimensions. To improve evaluation reliability, we introduce multimodal dual-reference evaluation, providing both textual and ground-truth image references for each sample assessment. Furthermore, we design an automated multi-scenario data synthesis pipeline and construct UniREdit-Data-100K, a large-scale synthetic dataset with high-quality chain-of-thought (CoT) reasoning annotations. We fine-tune Bagel on this dataset and develop UniREdit-Bagel, demonstrating substantial improvements in both in-domain and out-of-distribution settings. Through thorough benchmarking of both open-source and closed-source image editing models, we reveal their strengths and weaknesses across various aspects.

    23 分鐘
  8. 4 小時前

    World Simulation with Video Foundation Models for Physical AI

    🤗 Upvotes: 22 | cs.CV, cs.AI, cs.LG, cs.RO Authors: NVIDIA, :, Arslan Ali, Junjie Bai, Maciej Bala, Yogesh Balaji, Aaron Blakeman, Tiffany Cai, Jiaxin Cao, Tianshi Cao, Elizabeth Cha, Yu-Wei Chao, Prithvijit Chattopadhyay, Mike Chen, Yongxin Chen, Yu Chen, Shuai Cheng, Yin Cui, Jenna Diamond, Yifan Ding, Jiaojiao Fan, Linxi Fan, Liang Feng, Francesco Ferroni, Sanja Fidler, Xiao Fu, Ruiyuan Gao, Yunhao Ge, Jinwei Gu, Aryaman Gupta, Siddharth Gururani, Imad El Hanafi, Ali Hassani, Zekun Hao, Jacob Huffman, Joel Jang, Pooya Jannaty, Jan Kautz, Grace Lam, Xuan Li, Zhaoshuo Li, Maosheng Liao, Chen-Hsuan Lin, Tsung-Yi Lin, Yen-Chen Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Yifan Lu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Seungjun Nah, Yashraj Narang, Abhijeet Panaskar, Lindsey Pavao, Trung Pham, Morteza Ramezanali, Fitsum Reda, Scott Reed, Xuanchi Ren, Haonan Shao, Yue Shen, Stella Shi, Shuran Song, Bartosz Stefaniak, Shangkun Sun, Shitao Tang, Sameena Tasmeen, Lyne Tchapmi, Wei-Cheng Tseng, Jibin Varghese, Andrew Z. Wang, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Jiashu Xu, Dinghao Yang, Xiaodong Yang, Haotian Ye, Seonghyeon Ye, Xiaohui Zeng, Jing Zhang, Qinsheng Zhang, Kaiwen Zheng, Andrew Zhu, Yuke Zhu Title: World Simulation with Video Foundation Models for Physical AI Arxiv: http://arxiv.org/abs/2511.00062v1 Abstract: We introduce [Cosmos-Predict2.5], the latest generation of the Cosmos World Foundation Models for Physical AI. Built on a flow-based architecture, [Cosmos-Predict2.5] unifies Text2World, Image2World, and Video2World generation in a single model and leverages [Cosmos-Reason1], a Physical AI vision-language model, to provide richer text grounding and finer control of world simulation. Trained on 200M curated video clips and refined with reinforcement learning-based post-training, [Cosmos-Predict2.5] achieves substantial improvements over [Cosmos-Predict1] in video quality and instruction alignment, with models released at 2B and 14B scales. These capabilities enable more reliable synthetic data generation, policy evaluation, and closed-loop simulation for robotics and autonomous systems. We further extend the family with [Cosmos-Transfer2.5], a control-net style framework for Sim2Real and Real2Real world translation. Despite being 3.5$\times$ smaller than [Cosmos-Transfer1], it delivers higher fidelity and robust long-horizon video generation. Together, these advances establish [Cosmos-Predict2.5] and [Cosmos-Transfer2.5] as versatile tools for scaling embodied intelligence. To accelerate research and deployment in Physical AI, we release source code, pretrained checkpoints, and curated benchmarks under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-predict2.5 and https://github.com/nvidia-cosmos/cosmos-transfer2.5. We hope these open resources lower the barrier to adoption and foster innovation in building the next generation of embodied intelligence.

    29 分鐘

簡介

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art