Biznes Myśli

Vladimir

Szukasz sposobu na rozwój firmy z pomocą AI? Chcesz poprawić produkty i podejmować lepsze decyzje? Podcast "Biznes Myśli..." to Twoja dawka wiedzy o najnowszych trendach, praktycznych rozwiązaniach i inspirujących przykładach. Razem z ekspertami omawiamy kluczowe tematy AI: ludzie, pieniądze, trendy, pomysły, dane, narzędzia i sprawdzone praktyki. Biznes Myśli to Twoje sprawdzone źródło na temat sztucznej inteligencji. Świat zmienia się szybciej, niż myślisz – dołącz teraz! Blog: https://biznesmysli.pl/newsletter Youtube: 

  1. 12/26/2024

    BM135: AI 2025: wzrost, przetrwanie albo upadek?

    Agenci AI to przyszłość, ale czy na pewno rozumiesz, o co w tym wszystkim chodzi? Co Agenci AI mają wspólnego z SaaS, BigData oraz mikroserwisami? O tym i więcej jest w tym odcinku. 🎯 Główne myśli: - Firmy niewdrażające AI do 2025 roku mogą stracić konkurencyjność - Kluczowe jest zrozumienie różnicy między LLM a klasycznym ML - Agenci AI to potencjalnie przyszłość, ale wymaga przemyślanego podejścia - Software 3.0 łączy tradycyjny kod z możliwościami AI 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn:  https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML! Partnerem podcastu jest DataWorkshop. ⏰ Skrót: 02:08 Przyszłość rozwiązań AI 02:32 Kontrowersje wokół Agentów AI 05:34 Ewolucja firm i adaptacja do zmian 11:51 Od SaaS do Agentów AI 17:20 Lekcje z ery Big Data 23:09 Mikroserwisy vs Agenci AI 31:12 LLM vs klasyczne uczenie maszynowe 33:58 Software 3.0 i structured approach 38:14 RAG i Agenci AI w praktyce 43:52 Hierarchia rozwoju systemów AI 48:56 Biznesowe zastosowania AI 54:23 Znaczenie krytycznego myślenia Chcesz więcej? Zapisz się listę chętnych kursu praktyczny LLM.  Naucz się krok po kroku, jak budować i wdrażać rozwiązania, które robią różnicę: 👉  https://bit.ly/4gT5C9Z Ogładaj na Youtube: https://youtu.be/ZGX_t5mZHWI 🎧 Słuchaj BM wygodnie na Spotify, Apple Podcasts lub Google Podcasts: 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 https://podcastaddict.com/podcast/biznes-mysli/3028512 📌 https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_  #AI #SztucznaInteligencja #AgenciAI #PrzyszłośćAI #TrendyTechnologiczne #ArtificialIntelligence #BusinessStrategy #AI2025 #TechnologyTrends

    56 min
  2. 12/04/2024

    BM134: AI to NIE magia... ale wciąż oczekujesz cudów?

    🎙️ ML bez magii: Jak inżynieria i praktyczne podejście prowadzą do sukcesu? Większość projektów ML nie spełnia oczekiwań firm – dlaczego? Nierealistyczne oczekiwania i przekonanie, że ML to magiczne rozwiązanie, a nie narzędzie wymagające systematycznej pracy. Klucz do sukcesu? Precyzyjne metryki i świadome zarządzanie błędami. Opowiadam o pułapkach wdrożeń ML, które często spotykają firmy – od ignorowania reguł biznesowych po zbyt szybkie zmiany procesów. Dzielę się przykładami z mojego doświadczenia, które regularnie się powtarzają, więc szansa, że znajdziesz coś, co dotyczy właśnie Ciebie, jest bardzo wysoka. Dowiesz się, dlaczego nawet potężne LLM potrzebują jasnych celów i praktycznych testów.  Kluczem do sukcesu jest połączenie wizji biznesowej z inżynierskim podejściem, ciągła iteracja i zbieranie informacji zwrotnej. Chcesz zrozumieć, jak realnie wykorzystać potencjał ML w swoim biznesie i uniknąć rozczarowań? Ten odcinek jest dla Ciebie. Zapraszam! Generalnie, wzór na sukces w ML: wizja biznesowa + inżynierskie podejście + ciągła iteracja + feedback = sukces. Partnerem podcastu jest DataWorkshop. 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn:  https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML! Oto, czego się dowiesz: ✅ Dlaczego ML to narzędzie inżynieryjne, a nie magia? ✅ Jakie błędy najczęściej popełnia biznes podczas wdrażania modeli? ✅ Jak precyzyjnie określić metryki sukcesu i zarządzać kompromisem między błędami a wartością? ✅ Dlaczego jakość danych to fundament sukcesu, a nie tylko "miły dodatek"? ✅ Jak iteracyjne podejście wygrywa z tradycyjnym modelem waterfall w ML? ✅ Jak łączyć wizję biznesową z podejściem inżynieryjnym? 💡 Zrozumiesz, że ML to proces systematyczny: od pozyskiwania danych, przez testowanie, aż po wdrożenie modeli w produkcji. Nie zabraknie również przykładów na to, jak dobrze skonstruowane modele mogą przynieść realną wartość biznesową – pod warunkiem, że są odpowiednio zaprojektowane i skalibrowane. 🎯 Dla kogo? Dla liderów biznesu, inżynierów danych, analityków oraz wszystkich, którzy chcą unikać mitów i wdrażać ML w sposób przemyślany i skuteczny.

    58 min
  3. 11/20/2024

    BM133: Agenci AI: między hype'm a rzeczywistością

    Czy agenci AI zrewolucjonizują biznes? Odkryj prawdę za hype'em! W tym odcinku zagłębiamy się w fascynujący świat agentów AI, analizując ich potencjał i pułapki w kontekście biznesowym. Dowiedz się, jak odróżnić realne możliwości od marketingowych obietnic i jak skutecznie wykorzystać AI w swojej firmie już dziś! 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn:  https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML! Partnerem podcastu jest DataWorkshop. Oglądaj na Youtube: https://youtu.be/ltsh1QAuWos  W tym odcinku podcastu poruszyłem temat agentów AI, ich możliwości, ale też pułapek i praktycznego zastosowania w biznesie. Zauważyłem, że obecny szum medialny wokół AI, często napędzany przez inwestorów, nie zawsze odzwierciedla rzeczywisty potencjał tej technologii. Dlatego chciałem skupić się na tym, co AI może zaoferować dziś, a nie na obietnicach związanych z odległą przyszłością. Jeśli chodzi o biznes, przestrzegam przed nadmiernym fascynowaniem się autonomią agentów AI. W biznesie liczą się konkretne wyniki, a wdrożenie niedojrzałej technologii może być ryzykowne. Zamiast gonić za medialnym hype'm, warto skupić się na praktycznym wykorzystaniu dostępnych narzędzi AI do rozwiązywania realnych problemów. Timecode: 0:01:30 - Wprowadzenie do agentów AI i trendy w rozwoju sztucznej inteligencji 0:07:24 - Rola technologii w zmieniającym się świecie biznesu 0:15:55 - Wyzwania związane z wdrażaniem i utrzymaniem systemów AI 0:27:14 - Praktyczne zastosowania agentów AI w HR i marketingu 0:38:59 - Różnica między szumem a praktyczną wartością AI 0:49:48 - Ewolucja AI w biznesie i znaczenie konkretnych rozwiązań 1:00:40 - Rola człowieka w nadzorowaniu algorytmów AI 1:06:51 - Proces wdrażania inteligentnych agentów w firmach Podziel się swoimi przemyśleniami w komentarzach - jak widzisz rolę AI w swojej branży? Chcesz więcej? Zajrzyj do moich kursów online i ucz się ML i analizy danych w praktyce! 👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning 👉 Python - https://dataworkshop.eu/pl/intro-python 👉 Statystyka - https://dataworkshop.eu/statistics 👉 SQL - https://dataworkshop.eu/pl/sql 👉 Time Series - https://dataworkshop.eu/pl/time-series 👉 NLP - https://dataworkshop.eu/pl/nlp 🎧 Słuchaj BM wygodnie na Spotify, Apple Podcasts lub Google Podcasts: 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 https://podcastaddict.com/podcast/biznes-mysli/3028512 📌 https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_

    1h 6m
  4. 11/06/2024

    BM132: LLM i prawo, możliwości, wyzwania, narzędzia

    Czy duże modele językowe (LLM) to rewolucja, czy zagrożenie dla prawników? W tym odcinku przybliżam możliwości dużych modeli językowych (LLM) w automatyzacji procesów prawnych, tworzeniu dokumentów, tłumaczeniach prawniczych i compliance. To, co wydaje się przyszłością, dzieje się już teraz – ale czy to na pewno oznacza koniec klasycznego prawa? Partnerem podcastu jest DataWorkshop. 🎯 W tym odcinku dowiesz się: - Jak LLM może wspierać pracę prawników - Jakie są praktyczne zastosowania AI w prawie - Dlaczego człowiek pozostanie kluczowym elementem procesu - Jak wdrażać rozwiązania AI w sposób bezpieczny i kontrolowany Oglądaj na YouTube:  https://youtu.be/adQj3bth4XA 🌐 Odwiedź naszą stronę: https://biznesmysli.pl/llm-i-prawo-mozliwosci-wyzwania-narzedzia 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn:  https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML! 🕒 Co znajdziesz w tym odcinku: 00:01:09 - Wprowadzenie: LLM jako narzędzie dla prawników [00:02:28] Praktyczne zastosowania LLM: umowy, dotacje UE, compliance [00:06:02] Wpływ AI na rynek pracy prawników [00:11:54] Automatyzacja umów i szablony [00:15:06] Audytowalność i działanie LLM [00:18:54] Człowiek w centrum zarządzania LLM [00:23:31] Wdrażanie ML i anonimowość danych [00:28:39] Mapa wiedzy - instrukcje do umów [00:34:04] Zaufanie i transparentność LLM [00:43:40] Modułowe podejście do umów [00:46:20] Compliance I LLM [00:52:54] LLM, efektywność i koszty [00:55:56] Mapy wiedzy - przewaga konkurencyjna [00:57:40] AI Act i dokumenty AI W trakcie tego odcinka poznasz trzy konkretne przykłady, jak sztuczna inteligencja może wspierać prawników w codziennych zadaniach. Omawiam też, dlaczego technologia AI powinna być wspierana ludzkim nadzorem i jak dzięki audytowalności możemy zwiększyć jej efektywność. Co więcej, poruszam temat automatyzacji tworzenia dokumentów i budowania "mapy wiedzy", które mogą wspierać prawników w szybszym przygotowywaniu dokumentów i zwiększaniu wydajności. Zdobądź praktyczną wiedzę na temat: - Wykorzystania LLM w prawie: automatyzacja, tworzenie umów, wnioski o granty, compliance - Wpływu AI na rynek pracy prawników: zagrożenia i szanse - Budowania efektywnych map wiedzy: klucz do sukcesu w pracy z LLM - AI Act i jego konsekwencji: przygotuj się na zmiany w 2025 roku 🔖 Tagi: #llm #legaltech  #legal  #ai #prawo #genai #biznes #usecase #podcast  📢 Podzielcie się tym odcinkiem z osobami, które mogą być zainteresowane tematyką AI i prawem! Chcesz więcej? Zajrzyj do moich kursów online i ucz się ML i analizy danych w praktyce! 👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning 👉 Python - https://dataworkshop.eu/pl/intro-python 👉 Statystyka - https://dataworkshop.eu/statistics 👉 SQL - https://dataworkshop.eu/pl/sql 👉 Time Series - https://dataworkshop.eu/pl/time-series 👉 NLP - https://dataworkshop.eu/pl/nlp 🎧 Słuchaj BM wygodnie na Spotify, Apple Podcasts lub Google Podcasts: 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 https://podcastaddict.com/podcast/biznes-mysli/3028512 📌 https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_ Dziękuję, że jesteście z nami! Do usłyszenia w kolejnym odcinku! 🎧

    58 min
  5. 10/23/2024

    BM131: Praktyczny LLM

    Czy cały szum wokół LLM to tylko marketingowa bańka? 🤔  Choć szum wokół LLM powoli cichnie, ich prawdziwy potencjał  LLM dopiero się ujawnia. Kluczem do sukcesu nie jest ślepe podążanie za trendami, ale świadome i ustrukturyzowane podejście, oparte na zrozumieniu zarówno możliwości, jak i ograniczeń tych modeli. W tym odcinku podcastu Biznes Myśli kontynuję wątek o praktycznym zastosowania LLM w biznesie. Partnerem podcastu jest DataWorkshop. Dowiesz się: - Czym różni się myślenie specjalisty od ML od programisty i dlaczego to kluczowe w pracy z LLM? - Jakie są największe wyzwania związane z wdrażaniem LLM na produkcję i jak je pokonać? - 7 kroków do stworzenia solidnego rozwiązania LLM, któremu możesz zaufać i które przyniesie realne korzyści. - "Mapa wiedzy" - nowatorskie podejście do LLM, o którym raczej nie wiesz :) 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn:  https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML! 🕒 Spis treści: 00:01:42 - Wprowadzenie do praktycznego LLM 00:03:06 - Statystyki popularności ChatGPT 00:07:45 - Oczekiwania biznesu wobec AI 00:09:50 - Ewolucja programowania i ML 00:12:36 - Krytyka podejścia no-code 00:14:37 - Dlaczego kod jest ważny w biznesie 00:18:28 - Nieprzewidywalność ML i zarządzanie błędami 00:20:50 - Wyzwania w praktycznym zastosowaniu LLM 00:27:00 - Kluczowe role w komunikacji z LLM 00:28:34 - Koncepcja "design by contract" 00:33:34 - Strukturyzacja danych w pracy z LLM 00:39:58 - Testowanie etapów pracy z LLM 00:41:08 - Tworzenie własnych leaderboardów 00:46:40 - Mapy wiedzy w LLM 00:47:44 - Integracja klasycznego ML z LLM 00:54:30 - Koncepcja kursu "Praktyczny LLM" 00:55:30 - Programista 3.0 - nowe podejście do AI Poczytać możesz tutaj:  https://biznesmysli.pl/praktyczny-llm/ Tu możesz oglądać video: https://youtu.be/hJVD876wDyA Pamiętaj, że LLM to nadal ML! Niepewność i błędy to nieodłączna część uczenia maszynowego. Zamiast oczekiwać cudów, skup się na zarządzaniu ryzykiem, weryfikacji wyników i budowaniu mechanizmów kontroli. Skoncentruj się na strukturze i kontroli. Definiuj precyzyjne schematy wejścia i wyjścia dla swoich modeli, korzystaj ze "structured output" i waliduj każdy etap procesu. Traktuj LLM jak element większego systemu, który wymaga odpowiedniego zaprojektowania i nadzoru. Nie ufaj ślepo leaderboardom. To, co sprawdza się w testach, nie zawsze przekłada się na realne problemy. Twórz własne benchmarki, dostosowane do specyfiki Twoich zastosowań. Chcesz więcej? Zajrzyj do moich kursów online i ucz się ML i analizy danych w praktyce! 👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning 👉 Python - https://dataworkshop.eu/pl/intro-python 👉 Statystyka - https://dataworkshop.eu/statistics 👉 SQL - https://dataworkshop.eu/pl/sql 👉 Time Series - https://dataworkshop.eu/pl/time-series 👉 NLP - https://dataworkshop.eu/pl/nlp 🎧 Słuchaj BM wygodnie na Spotify, Apple Podcasts lub Google Podcasts: 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 https://podcastaddict.com/podcast/biznes-mysli/3028512 📌 https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_ #llm #genai #ai #production #ml

    1h 3m
  6. 10/09/2024

    BM130: LangChain i wektorowe bazy: ciemna strona prototypowania AI

    Dzisiaj skupimy się na wdrażaniu AI na produkcję. Omówię trzy kluczowe kwestie: 1️⃣ Paradoks danych, zwykle zgadzamy się, że dane są ważne, ale często nie poświęcamy im tyle uwagi, ile potrzebują. 2️⃣ Przesadna koncentracja na narzędziach, owszem narzędzia są ważne, ale nie najważniejsze. 3️⃣ Cechy dobrego projektu na produkcję. Powinien być wiarygodny, kontrolowany, audytowalny i łatwy w naprawie błędów. Partnerem podcastu jest DataWorkshop - gdzie zajmują się praktycznym ML/AI. Na koniec odcinka też odpowiadam na pytania: Jakie są najczęstsze błędy firm, które próbują wdrożyć AI (główny mit)?Jakie są największe wyzwania związane z modelami LLM przy wdrażaniu je na produkcję?Jakie praktyczne wskazówki mam dla Ciebie, aby wdrożyć AI w swojej firmie?  Najważniejszym elementem udanego wdrożenia AI jest odpowiednie przygotowanie danych. To właśnie na poziomie danych wykonuje się 50-80% całej pracy. Kluczowe jest zadbanie o: Jakość danychOdpowiednią strukturyzację (np. w bazie danych lub systemie plików)Łatwość wyszukiwania potrzebnych informacjiMożliwość aktualizacji danychZarządzanie dostępami i uprawnieniami Powiem Ci trzy historie (projekty LLM), co najmniej trzy, będzie pewnie ich więcej, ale takie trzy przypadki użycia, w których wprost jako DataWorkshop jesteśmy teraz zaangażowani. Myślę, że to pobudzi Twoją wyobraźnię i lepiej zrozumiesz, co jest ważniejsze. Bo pamiętaj, że w większości przypadków są różne szacunki, 80%, 90%, nawet jeśli 50%, zwykle ML nie działa. Historia pierwsza - "Mentor" Organizacja zajmuje się mentoringiem w obszarze IT, skupiając się na wiedzy organizacyjnej, menedżerskiej i liderskiej. Obecnie zapraszani są eksperci, którzy prowadzą warsztaty. Są pewne wyzwania: ciężko jest to uspójnić, bo różni eksperci prezentują wiedzę w inny sposób i co jeszcze jest Trudności ze znalezieniem praktyków, bo znalezienie i zaangażowanie zapracowanych ekspertów jest trudne.Pojawił się pomysł, aby ocyfrować wiedzę i częściowo zautomatyzować mentoring przy pomocy AI. Czy to w ogóle możliwe? Historia druga - "Egzamin" Drugi projekt nazwijmy "Egzamin". W szkole zawodowej uczniowie zdają egzaminy, aby zdobyć kwalifikacje. Celem projektu jest stworzenie asystenta AI, który zdałby ten egzamin. Dlaczego to istotne? Zdając egzamin, asystent udowodniłby, że rozumie daną branżę. Można go by potem rozwijać, aby podpowiadał i prognozował. Klasyczne uczenie maszynowe i LLM mogą tu współdziałać. LLM może posiadać ogólną wiedzę zdobytą w procesie uczenia, a klasyczne algorytmy ML mogą prognozować wartości, np. popyt. Historia trzecia - "Helpdesk" Trzecia projekt nazwijmy "Helpdesk", projekt, w którym zachowanie poufności jest kluczowe. Nie mogę zdradzać szczegółów branży. W skrócie, chodzi o wykorzystanie LLM do stworzenia chatbota obsługującego bazę wiedzy i odpowiadającego na pytania użytkowników. Co znajdziesz w tym odcinku? 1️⃣ Paradoks danych – mówimy o ich znaczeniu, ale często zaniedbujemy realne działania na rzecz ich jakości. 2️⃣ Dlaczego 80-90% projektów ML nie trafia na produkcję? Poznaj najczęstsze błędy. 3️⃣ Trzy inspirujące przykłady z życia – mentoring z AI, egzamin z udziałem LLM oraz obsługa klienta wspomagana przez AI. 4️⃣ Kontrola i audytowalność – jak stworzyć projekt, który będzie skalowalny, zaufany i gotowy do poprawy błędów. 5️⃣ LLM i klasyczne ML – współpraca, a nie konkurencja. 6️⃣ Zadbaj o to, co naprawdę ważne!  7️⃣ Jeśli chcesz lepiej zrozumieć, jak skutecznie wdrażać modele ML w Twojej organizacji, nie przegap tego odcinka! 🎧 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: YouTube https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn: https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML!  Tu możesz: pooglądać: https://youtu.be/7SWnHtGgDw8 poczytać: https://biznesmysli.pl/langchain-i-wektorowe-bazy-ciemna-strona-prototypowania-ai/ Chcesz więcej? Zajrzyj do moich kursów online i ucz się ML i analizy danych w praktyce! 👉 DS/ML od podstaw - https://bit.ly/47ZRf0w 👉 Python - https://bit.ly/47ZRbOk 👉 Statystyka - https://bit.ly/4dCPkQQ 👉 SQL - https://bit.ly/4ezPtpr 👉 Time Series - https://bit.ly/4ex0isc 👉 NLP - https://bit.ly/3Y0RWSA 🎧 Słuchaj BM wygodnie na Spotify, Apple Podcasts lub Google Podcasts: 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_ #llm #rag #langchain #embedding #ai #ml #genai #podcast

    1h 5m
  7. 09/25/2024

    BM129: Inferencja modele LLM: Mniej kosztów, więcej mocy

    Chcesz uruchomić modele LLM (np. Llama, Mistral czy Bielika) na własnych warunkach? W tym odcinku dowiesz się o sprzęcie, oprogramowaniu i trikach, które to ułatwią. Konkretna i praktyczna wiedza, która Ci się przyda.  Oglądaj na YouTube: https://youtu.be/_OKLzmaSmg0 🔔 Subskrybuj i włącz powiadomienia - Twoja droga do praktycznego ML zaczyna się od jednego kliknięcia: https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like, bo więcej lajków = więcej praktycznych treści dla Ciebie! 💬 Co o tym myślisz? Zostaw komentarz! Masz pytanie? Zadaj je - chętnie odpowiem. 🤝 Poznajmy się lepiej! Zaproś mnie do swojej sieci na LinkedIn:  https://www.linkedin.com/in/vladimiralekseichenko/ 🔊 Zainicjuj rozmowę o ML w firmie, polecając ten podcast. Zainspiruj zespół do wdrażania ML! Poruszam też wątek GPT-4o: czy to rewolucja, czy ewolucja? I dlaczego OpenAI w tym modelu postawiło na inferencję oraz jak to jest powiązane z "rozważaniem". Podaję analogię, aby pobudzić Twoją wyobraźnię :). Do tego opowiadam jeszcze historię o Elon Musku, jak zorganizował serwerownię z 100 tysiącami kart H100 (+50 tysięcy) w około 4 miesiące, gdzie normalnie zajęłoby to co najmniej rok, i jakie napotkali wyzwania, poza samym zakupem kart GPU (wydał na nie ponad kilka miliardów dolarów). Dla porównania w Polsce na wszystkich uczelniach łącznie jest ok. 1 tys. H100. Pracując nad tym odcinkiem zrobiłem ​mapę myśli​, aby lepiej ustrektyryzwaoć wiedzę. Tu możesz je znaleźć. Łap! :) Można powiększać i klikać (część linków zostawiłem, chociaż przyznam, że to długi proces, ale uznałem, że może być wartościowy dla Ciebie).  🔥 https://mm.tt/app/map/3441826029?t=XESxGmZdR8  Pytania, na które znajdziesz odpowiedzi w tym odcinku: - Czym jest inferencja modeli LLM i jakie są kluczowe wymagania sprzętowe do jej przeprowadzenia? Jakie są dostępne opcje dostępu do mocy obliczeniowej potrzebnej do uruchamiania modeli AI i jakie są ich zalety oraz wady? - Jakie są główne różnice między zamkniętymi a otwartymi modelami AI i którzy są kluczowi gracze w tej dziedzinie? - Ile RAMu potrzebuje DUŻY model językowy i czy Twój komputer da radę? - Ile GPU trzeba mieć aby uruchomić Llame 8B, 70B czy nawet 400B? Jakie są najważniejsze parametry GPU i co one oznaczają w praktyce (tak po ludzku)? - Czy NVIDIA to JEDYNY wybór dla sprzętu? Poznaj alternatywy! - Czym jest kwantyzacja modeli LLM i jak wpływa na ich wydajność oraz precyzję? Partnerem podcastu jest DataWorkshop. Chcesz więcej? Zajrzyj do moich kursów online i ucz się ML i analizy danych w praktyce! 👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning 👉 Python - https://dataworkshop.eu/pl/intro-python 👉 Statystyka - https://dataworkshop.eu/statistics 👉 SQL - https://dataworkshop.eu/pl/sql 👉 Time Series - https://dataworkshop.eu/pl/time-series 👉 NLP - https://dataworkshop.eu/pl/nlp 🎧 Słuchaj BM wygodnie na Spotify, Apple Podcasts lub Google Podcasts: 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_

    1h 9m
  8. 09/11/2024

    BM128: Czy warto inwestować LLM? Czy w klasyczny ML?

    Czy sztuczna inteligencja zastąpi klasyczne uczenie maszynowe? Dowiedz się, jak skutecznie wykorzystać obie technologie w biznesie! ✔ Subskrybuj kanał: / https://www.youtube.com/@DataWorkshop?sub_confirmation=1 👍 Zostaw like! ❗Obserwuj mnie na LinkedIn https://www.linkedin.com/in/vladimiralekseichenko 📢 Poleć ten podcast znajomym zainteresowanym praktycznym wykorzystaniem AI w biznesie!  Przedstawiam różne perspektywy, dzieli się osobistymi doświadczeniami i analizuję, jak te technologie mogą wspierać decyzje biznesowe.  W tym odcinku dowiesz się: • Jakie są kluczowe różnice między LLM a klasycznym ML? • Kiedy warto inwestować w LLM, a kiedy lepiej stosować tradycyjne podejście? • Jak łączyć obie technologie dla uzyskania najlepszych rezultatów? • Jakie są praktyczne zastosowania LLM w biznesie? Najważniejsze tematy: 1. LLM (Large Language Models) i klasyczne uczenie maszynowe (ML) mają różne zastosowania i zalety - wybór między nimi powinien zależeć od charakteru problemu i dostępnych danych. 2. Klasyczne ML nadal wytwarza większą wartość w biznesie, szczególnie dla danych tabelarycznych, oferując lepszą jakość, szybkość i interpretowalność wyników. 3. LLM są przydatne do pracy z nieustrukturyzowanym tekstem, tworzenia baz wiedzy i wspomagania komunikacji między zespołami technicznymi a biznesowymi. 4. Najlepszym podejściem jest często łączenie klasycznego ML z LLM, wykorzystując zalety obu metod. 5. Wdrażanie i utrzymanie rozwiązań opartych na klasycznym ML jest zwykle prostsze i tańsze niż w przypadku LLM. 6. LLM nie zastępują całkowicie zespołu data science, ale mogą być cennym narzędziem wspomagającym, np. w generowaniu kodu czy dokumentacji. 7. Przy projektowaniu rozwiązań AI kluczowe jest zrozumienie problemu, skupienie się na stabilności i przewidywalności, a nie tylko na najnowszych narzędziach. Subskrybuj teraz i włącz dzwonek powiadomień, aby być dostawać praktyczną wiedzę o uczeniu maszynowym. Ten podcast to KONIECZNIE POZYCJA dla każdego, kto: - Interesuje się sztuczną inteligencją i jej zastosowaniami w biznesie - Rozważa wdrożenie LLM-ów lub klasycznego ML w swojej firmie - Chce być na bieżąco z najnowszymi trendami w AI Oglądaj na Youtube: https://youtu.be/TPDvcFeuoZ4 Autorskie kursy Vladimira: 👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning 👉 Python - https://dataworkshop.eu/pl/intro-python 👉 Statystyka - https://dataworkshop.eu/statistics 👉 SQL - https://dataworkshop.eu/pl/sql 👉 Time Series - https://dataworkshop.eu/pl/time-series 👉 NLP - https://dataworkshop.eu/pl/nlp 🔥 Chcesz uczyć się ML/DS w DataWorkshop?  Zarezerwuj indywidualną konsultację, aby doradzić najlepszą opcję dla Ciebie. https://dataworkshop.typeform.com/to/YCBMn37h Linki do podcastu: 📌  https://youtu.be/4pfEZuw3dtE 📌 https://biznesmysli.pl 📌 Apple Podcasts: https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277 📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I 📌 Google Podcasts https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_ 📌 Spreaker: https://www.spreaker.com/podcast/biznes-mysli--2214604 #machinelearning #datascience #genai #llm #ml #ai

    59 min

Ratings & Reviews

5
out of 5
2 Ratings

About

Szukasz sposobu na rozwój firmy z pomocą AI? Chcesz poprawić produkty i podejmować lepsze decyzje? Podcast "Biznes Myśli..." to Twoja dawka wiedzy o najnowszych trendach, praktycznych rozwiązaniach i inspirujących przykładach. Razem z ekspertami omawiamy kluczowe tematy AI: ludzie, pieniądze, trendy, pomysły, dane, narzędzia i sprawdzone praktyki. Biznes Myśli to Twoje sprawdzone źródło na temat sztucznej inteligencji. Świat zmienia się szybciej, niż myślisz – dołącz teraz! Blog: https://biznesmysli.pl/newsletter Youtube: