Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. 1H AGO

    MCPMark: A Benchmark for Stress-Testing Realistic and Comprehensive MCP Use

    🤗 Upvotes: 124 | cs.CL, cs.AI Authors: Zijian Wu, Xiangyan Liu, Xinyuan Zhang, Lingjun Chen, Fanqing Meng, Lingxiao Du, Yiran Zhao, Fanshi Zhang, Yaoqi Ye, Jiawei Wang, Zirui Wang, Jinjie Ni, Yufan Yang, Arvin Xu, Michael Qizhe Shieh Title: MCPMark: A Benchmark for Stress-Testing Realistic and Comprehensive MCP Use Arxiv: http://arxiv.org/abs/2509.24002v1 Abstract: MCP standardizes how LLMs interact with external systems, forming the foundation for general agents. However, existing MCP benchmarks remain narrow in scope: they focus on read-heavy tasks or tasks with limited interaction depth, and fail to capture the complexity and realism of real-world workflows. To address this gap, we propose MCPMark, a benchmark designed to evaluate MCP use in a more realistic and comprehensive manner. It consists of $127$ high-quality tasks collaboratively created by domain experts and AI agents. Each task begins with a curated initial state and includes a programmatic script for automatic verification. These tasks demand richer and more diverse interactions with the environment, involving a broad range of create, read, update, and delete (CRUD) operations. We conduct a comprehensive evaluation of cutting-edge LLMs using a minimal agent framework that operates in a tool-calling loop. Empirical results show that the best-performing model, gpt-5-medium, reaches only $52.56$\% pass@1 and $33.86$\% pass^4, while other widely regarded strong models, including claude-sonnet-4 and o3, fall below $30$\% pass@1 and $15$\% pass^4. On average, LLMs require $16.2$ execution turns and $17.4$ tool calls per task, significantly surpassing those in previous MCP benchmarks and highlighting the stress-testing nature of MCPMark.

    25 min
  2. 2H AGO

    The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain

    🤗 Upvotes: 106 | cs.NE, cs.AI, cs.LG, stat.ML Authors: Adrian Kosowski, Przemysław Uznański, Jan Chorowski, Zuzanna Stamirowska, Michał Bartoszkiewicz Title: The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain Arxiv: http://arxiv.org/abs/2509.26507v1 Abstract: The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \$n\$ locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.

    24 min
  3. 2H AGO

    Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play

    🤗 Upvotes: 103 | cs.CV, cs.AI Authors: Qinsi Wang, Bo Liu, Tianyi Zhou, Jing Shi, Yueqian Lin, Yiran Chen, Hai Helen Li, Kun Wan, Wentian Zhao Title: Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play Arxiv: http://arxiv.org/abs/2509.25541v1 Abstract: Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

    29 min
  4. 2H AGO

    Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning

    🤗 Upvotes: 57 | cs.CL Authors: Shaobo Wang, Jiaming Wang, Jiajun Zhang, Cong Wang, Yue Min, Zichen Wen, Fei Huang, Huiqiang Jiang, Junyang Lin, Dayiheng Liu, Linfeng Zhang Title: Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning Arxiv: http://arxiv.org/abs/2509.23873v1 Abstract: As supervised fine-tuning (SFT) evolves from a lightweight post-training step into a compute-intensive phase rivaling mid-training in scale, data efficiency has become critical for aligning large language models (LLMs) under tight budgets. Existing data pruning methods suffer from a fragmented design: they operate either at the sample level or the token level in isolation, failing to jointly optimize both dimensions. This disconnect leads to significant inefficiencies--high-value samples may still contain redundant tokens, while token-level pruning often discards crucial instructional or corrective signals embedded in individual examples. To address this bottleneck, we introduce the Error-Uncertainty (EU) Plane, a diagnostic framework that jointly characterizes the heterogeneous utility of training data across samples and tokens. Guided by this insight, we propose Quadrant-based Tuning (Q-Tuning), a unified framework that strategically coordinates sample pruning and token pruning. Q-Tuning employs a two-stage strategy: first, it performs sample-level triage to retain examples rich in informative misconceptions or calibration signals; second, it applies an asymmetric token-pruning policy, using a context-aware scoring mechanism to trim less salient tokens exclusively from misconception samples while preserving calibration samples in their entirety. Our method sets a new state of the art across five diverse benchmarks. Remarkably, on SmolLM2-1.7B, Q-Tuning achieves a +38\% average improvement over the full-data SFT baseline using only 12.5\% of the original training data. As the first dynamic pruning approach to consistently outperform full-data training, Q-Tuning provides a practical and scalable blueprint for maximizing data utilization in budget-constrained LLM SFT.

    20 min
  5. 2H AGO

    TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning

    🤗 Upvotes: 45 | cs.CL, cs.AI, cs.LG Authors: Zhepei Wei, Xiao Yang, Kai Sun, Jiaqi Wang, Rulin Shao, Sean Chen, Mohammad Kachuee, Teja Gollapudi, Tony Liao, Nicolas Scheffer, Rakesh Wanga, Anuj Kumar, Yu Meng, Wen-tau Yih, Xin Luna Dong Title: TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning Arxiv: http://arxiv.org/abs/2509.25760v1 Abstract: While large language models (LLMs) have demonstrated strong performance on factoid question answering, they are still prone to hallucination and untruthful responses, particularly when tasks demand information outside their parametric knowledge. Indeed, truthfulness requires more than accuracy -- models must also recognize uncertainty and abstain when unsure to avoid hallucinations. This presents a fundamental challenge for existing methods: approaches that optimize for accuracy often amplify hallucinations, while those that encourage abstention can become overly conservative, sacrificing correct answers. Both extremes ultimately compromise truthfulness. In this work, we present TruthRL, a general reinforcement learning (RL) framework that directly optimizes the truthfulness of LLMs. Specifically, we implement TruthRL using GRPO with a simple yet effective ternary reward that distinguishes correct answers, hallucinations, and abstentions. It incentivizes models to reduce hallucinations not only by providing correct responses, but also by enabling abstention when uncertain, thereby improving truthfulness. Extensive experiments across four knowledge-intensive benchmarks show that, compared to vanilla RL, TruthRL significantly reduces hallucinations by 28.9% and improves truthfulness by 21.1%, with consistent gains across various backbone models (e.g., Qwen, Llama) under both retrieval and non-retrieval setups. In-depth ablation study demonstrates that vanilla accuracy-driven methods, such as supervised fine-tuning or RL with a binary reward, struggle to balance factual correctness and uncertainty. In contrast, our proposed truthfulness-driven TruthRL achieves strong performance in both accuracy and truthfulness, underscoring the importance of learning objective design for developing truthful LLMs.

    25 min
  6. 2H AGO

    Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training

    🤗 Upvotes: 36 | cs.LG, cs.AI, cs.CV, cs.MM Authors: Junlin Han, Shengbang Tong, David Fan, Yufan Ren, Koustuv Sinha, Philip Torr, Filippos Kokkinos Title: Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training Arxiv: http://arxiv.org/abs/2509.26625v1 Abstract: Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.

    27 min
  7. 2H AGO

    OceanGym: A Benchmark Environment for Underwater Embodied Agents

    🤗 Upvotes: 30 | cs.CL, cs.AI, cs.CV, cs.LG, cs.RO Authors: Yida Xue, Mingjun Mao, Xiangyuan Ru, Yuqi Zhu, Baochang Ren, Shuofei Qiao, Mengru Wang, Shumin Deng, Xinyu An, Ningyu Zhang, Ying Chen, Huajun Chen Title: OceanGym: A Benchmark Environment for Underwater Embodied Agents Arxiv: http://arxiv.org/abs/2509.26536v1 Abstract: We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.

    22 min
  8. 2H AGO

    More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models

    🤗 Upvotes: 29 | cs.CV, cs.AI Authors: Xinyu Tian, Shu Zou, Zhaoyuan Yang, Mengqi He, Fabian Waschkowski, Lukas Wesemann, Peter Tu, Jing Zhang Title: More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models Arxiv: http://arxiv.org/abs/2509.25848v1 Abstract: Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/

    25 min

About

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

You Might Also Like