Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. -4 H

    SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention

    🤗 Upvotes: 98 | cs.LG, cs.AI, cs.CV Authors: Jintao Zhang, Haoxu Wang, Kai Jiang, Shuo Yang, Kaiwen Zheng, Haocheng Xi, Ziteng Wang, Hongzhou Zhu, Min Zhao, Ion Stoica, Joseph E. Gonzalez, Jun Zhu, Jianfei Chen Title: SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention Arxiv: http://arxiv.org/abs/2509.24006v1 Abstract: In Diffusion Transformer (DiT) models, particularly for video generation, attention latency is a major bottleneck due to the long sequence length and the quadratic complexity. We find that attention weights can be separated into two parts: a small fraction of large weights with high rank and the remaining weights with very low rank. This naturally suggests applying sparse acceleration to the first part and low-rank acceleration to the second. Based on this finding, we propose SLA (Sparse-Linear Attention), a trainable attention method that fuses sparse and linear attention to accelerate diffusion models. SLA classifies attention weights into critical, marginal, and negligible categories, applying O(N^2) attention to critical weights, O(N) attention to marginal weights, and skipping negligible ones. SLA combines these computations into a single GPU kernel and supports both forward and backward passes. With only a few fine-tuning steps using SLA, DiT models achieve a 20x reduction in attention computation, resulting in significant acceleration without loss of generation quality. Experiments show that SLA reduces attention computation by 95% without degrading end-to-end generation quality, outperforming baseline methods. In addition, we implement an efficient GPU kernel for SLA, which yields a 13.7x speedup in attention computation and a 2.2x end-to-end speedup in video generation on Wan2.1-1.3B.

    25 min
  2. -4 H

    Multiplayer Nash Preference Optimization

    🤗 Upvotes: 52 | cs.AI, cs.CL Authors: Fang Wu, Xu Huang, Weihao Xuan, Zhiwei Zhang, Yijia Xiao, Guancheng Wan, Xiaomin Li, Bing Hu, Peng Xia, Jure Leskovec, Yejin Choi Title: Multiplayer Nash Preference Optimization Arxiv: http://arxiv.org/abs/2509.23102v1 Abstract: Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an $n$-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.

    26 min
  3. -4 H

    RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark

    🤗 Upvotes: 41 | cs.AI Authors: Yang Shi, Yuhao Dong, Yue Ding, Yuran Wang, Xuanyu Zhu, Sheng Zhou, Wenting Liu, Haochen Tian, Rundong Wang, Huanqian Wang, Zuyan Liu, Bohan Zeng, Ruizhe Chen, Qixun Wang, Zhuoran Zhang, Xinlong Chen, Chengzhuo Tong, Bozhou Li, Chaoyou Fu, Qiang Liu, Haotian Wang, Wenjing Yang, Yuanxing Zhang, Pengfei Wan, Yi-Fan Zhang, Ziwei Liu Title: RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark Arxiv: http://arxiv.org/abs/2509.24897v1 Abstract: The integration of visual understanding and generation into unified multimodal models represents a significant stride toward general-purpose AI. However, a fundamental question remains unanswered by existing benchmarks: does this architectural unification actually enable synergetic interaction between the constituent capabilities? Existing evaluation paradigms, which primarily assess understanding and generation in isolation, are insufficient for determining whether a unified model can leverage its understanding to enhance its generation, or use generative simulation to facilitate deeper comprehension. To address this critical gap, we introduce RealUnify, a benchmark specifically designed to evaluate bidirectional capability synergy. RealUnify comprises 1,000 meticulously human-annotated instances spanning 10 categories and 32 subtasks. It is structured around two core axes: 1) Understanding Enhances Generation, which requires reasoning (e.g., commonsense, logic) to guide image generation, and 2) Generation Enhances Understanding, which necessitates mental simulation or reconstruction (e.g., of transformed or disordered visual inputs) to solve reasoning tasks. A key contribution is our dual-evaluation protocol, which combines direct end-to-end assessment with a diagnostic stepwise evaluation that decomposes tasks into distinct understanding and generation phases. This protocol allows us to precisely discern whether performance bottlenecks stem from deficiencies in core abilities or from a failure to integrate them. Through large-scale evaluations of 12 leading unified models and 6 specialized baselines, we find that current unified models still struggle to achieve effective synergy, indicating that architectural unification alone is insufficient. These results highlight the need for new training strategies and inductive biases to fully unlock the potential of unified modeling.

    25 min
  4. -4 H

    Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR

    🤗 Upvotes: 39 | cs.LG, cs.CL Authors: Fanding Huang, Guanbo Huang, Xiao Fan, Yi He, Xiao Liang, Xiao Chen, Qinting Jiang, Faisal Nadeem Khan, Jingyan Jiang, Zhi Wang Title: Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR Arxiv: http://arxiv.org/abs/2509.23808v1 Abstract: A prevailing view in Reinforcement Learning for Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named Effective Rank Velocity (ERV) and Effective Rank Acceleration (ERA), to capture exploitation dynamics. Our analysis reveals that at the hidden-state level, exploration and exploitation could be decoupled (Sec. 4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.

    25 min
  5. -4 H

    OpenGPT-4o-Image: A Comprehensive Dataset for Advanced Image Generation and Editing

    🤗 Upvotes: 38 | cs.CV, cs.AI Authors: Zhihong Chen, Xuehai Bai, Yang Shi, Chaoyou Fu, Huanyu Zhang, Haotian Wang, Xiaoyan Sun, Zhang Zhang, Liang Wang, Yuanxing Zhang, Pengfei Wan, Yi-Fan Zhang Title: OpenGPT-4o-Image: A Comprehensive Dataset for Advanced Image Generation and Editing Arxiv: http://arxiv.org/abs/2509.24900v1 Abstract: The performance of unified multimodal models for image generation and editing is fundamentally constrained by the quality and comprehensiveness of their training data. While existing datasets have covered basic tasks like style transfer and simple object manipulation, they often lack the systematic structure and challenging scenarios required for real-world applications. To address this bottleneck, we introduce OpenGPT-4o-Image, a large-scale dataset constructed using a novel methodology that combines hierarchical task taxonomy with automated data generation. Our taxonomy not only includes fundamental capabilities such as text rendering and style control but also introduces highly practical yet challenging categories like scientific imagery for chemistry illustrations and complex instruction editing requiring simultaneous execution of multiple operations. Through an automated pipeline leveraging structured resource pools and GPT-4o, we generate 80k high-quality instruction-image pairs with controlled diversity, covering 11 major domains and 51 subtasks. Extensive experiments show that fine-tuning leading models on our dataset achieves significant performance gains across multiple benchmarks, with improvements of up to 18\% on editing tasks (UniWorld-V1 on ImgEdit-Bench) and 13% on generation tasks (Harmon on GenEval). Our work demonstrates that systematic data construction is key to advancing multimodal AI capabilities.

    20 min
  6. -4 H

    SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer

    🤗 Upvotes: 36 | cs.CV, cs.AI Authors: Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie Title: SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer Arxiv: http://arxiv.org/abs/2509.24695v1 Abstract: We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.

    26 min
  7. -4 H

    Democratizing AI scientists using ToolUniverse

    🤗 Upvotes: 33 | cs.AI, cs.LG Authors: Shanghua Gao, Richard Zhu, Pengwei Sui, Zhenglun Kong, Sufian Aldogom, Yepeng Huang, Ayush Noori, Reza Shamji, Krishna Parvataneni, Theodoros Tsiligkaridis, Marinka Zitnik Title: Democratizing AI scientists using ToolUniverse Arxiv: http://arxiv.org/abs/2509.23426v1 Abstract: AI scientists are emerging computational systems that serve as collaborative partners in discovery. These systems remain difficult to build because they are bespoke, tied to rigid workflows, and lack shared environments that unify tools, data, and analyses into a common ecosystem. In omics, unified ecosystems have transformed research by enabling interoperability, reuse, and community-driven development; AI scientists require comparable infrastructure. We present ToolUniverse, an ecosystem for building AI scientists from any language or reasoning model, whether open or closed. TOOLUNIVERSE standardizes how AI scientists identify and call tools, integrating more than 600 machine learning models, datasets, APIs, and scientific packages for data analysis, knowledge retrieval, and experimental design. It automatically refines tool interfaces for correct use by AI scientists, creates new tools from natural language descriptions, iteratively optimizes tool specifications, and composes tools into agentic workflows. In a case study of hypercholesterolemia, ToolUniverse was used to create an AI scientist to identify a potent analog of a drug with favorable predicted properties. The open-source ToolUniverse is available at https://aiscientist.tools.

    26 min

À propos

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

Vous aimeriez peut‑être aussi