In this episode, we discuss Scaling Performance of Large Language Model Pretraining by Alexander Interrante-Grant, Carla Varela-Rosa, Suhaas Narayan, Chris Connelly, Albert Reuther. The paper explores the challenges and strategies involved in training large language models (LLMs) at scale, focusing on distributed training and managing massive datasets across many computing nodes. It provides practical recommendations for optimizing data parallelism to fully utilize GPU resources during pretraining. The goal is to offer clearer guidance on scaling LLM training pipelines, addressing a gap in publicly available information.
정보
- 프로그램
- 주기매일 업데이트
- 발행일2025년 9월 16일 오전 3:32 UTC
- 길이7분
- 에피소드1.7천
- 등급전체 연령 사용가