
Learning with the Online EM Algorithm (Olivier Cappé)
The Online Expectation-Maximization (EM) is a generic algorithm that can be used to estimate the parameters of latent data models incrementally from large volumes of data. The general principle of the approach is to use a stochastic approximation scheme, in the domain of sufficient statistics, as a proxy for a limiting, deterministic, population version of the EM recursion. In this talk, I will briefly review the convergence properties of the method and discuss some applications and extensions of the basic approach.
정보
- 프로그램
- 발행일2013년 5월 16일 오후 10:00 UTC
- 길이1시간 7분
- 등급전체 연령 사용가